| 注册
首页|期刊导航|计算机应用研究|基于MapReduce计算模型的并行关联规则挖掘算法研究综述

基于MapReduce计算模型的并行关联规则挖掘算法研究综述

肖文 胡娟 周晓峰

计算机应用研究2018,Vol.35Issue(1):13-23,11.
计算机应用研究2018,Vol.35Issue(1):13-23,11.DOI:10.3969/j.issn.1001-3695.2018.01.003

基于MapReduce计算模型的并行关联规则挖掘算法研究综述

Parallel association rules mining algorithm based on MapReduce:a survey

肖文 1胡娟 1周晓峰2

作者信息

  • 1. 河海大学文天学院电气信息工程系,安徽马鞍山243031
  • 2. 河南大学计算机与信息学院,南京210098
  • 折叠

摘要

Abstract

With the explosive growth of data,traditional algorithms couldn't meet the needs of the large data mining,it needed distributed parallel algorithm for mining association rules to solve the problem of mining association rules in large data.MapReduce was a kind of popular distributed parallel computing model,because of its simple to use,good scalability,the advantages of automatic load balancing and fault tolerance,had been widely used.This paper classified and reviewed the existing parallel algorithm for association rules minging based on MapReduce,summarized their respective advantages and disadvantages and scope of application,and prospected the next research.

关键词

数据挖掘/关联规则挖掘/频繁项集/并行/MapReduce/Hadoop

Key words

data mining/association rules mining/frequent itemset/parallel/MapReduce/Hadoop

分类

信息技术与安全科学

引用本文复制引用

肖文,胡娟,周晓峰..基于MapReduce计算模型的并行关联规则挖掘算法研究综述[J].计算机应用研究,2018,35(1):13-23,11.

基金项目

安徽省高校自然科学研究项目(KJ2016A623) (KJ2016A623)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文