| 注册
首页|期刊导航|计算机应用研究|一种改进的top-N协同过滤推荐算法

一种改进的top-N协同过滤推荐算法

肖文强 姚世军 吴善明

计算机应用研究2018,Vol.35Issue(1):105-108,112,5.
计算机应用研究2018,Vol.35Issue(1):105-108,112,5.DOI:10.3969/j.issn.1001-3695.2018.01.021

一种改进的top-N协同过滤推荐算法

Improved top-N collaborative filtering recommendation algorithm

肖文强 1姚世军 1吴善明1

作者信息

  • 1. 信息工程大学理学院,郑州450001
  • 折叠

摘要

Abstract

There exists several issues in traditional collaborative filtering algorithms:a)It takes the impact of all users' historical feedback information into account when calculating the similarities between any two items;b)It only utilizes the user's rating data when calculating the similarities.However,the user group that has similar interests with the target user has a higher reference value than other users.Considering the fact that irrelevant historical information leaded to poor recommendation results,this paper proposed a novel collaborative filtering recommendation algorithm based on K-means clustering.The new algorithm refined the user's similarity metric with the user's common rating weight and popular items weight,the item's similarity metric with time difference weight and user's rating weight respectively,and clustered all uses into several partitions according to the similarities.Then,it applied recommend algorithm in each of the clusters.Experimental results show that,compared with traditional item-based top-N collaborative filtering recommendation algorithm,the proposed algorithm can improve the recall by 2.1% on average.The proposed algorithm can improve the accuracy and the quality of the recommendation effectively.

关键词

协同过滤推荐算法/用户评分信息/相似度/聚类算法/召回率

Key words

collaborative filtering recommendation algorithm/wser's rating information/similarity/clustering algorithm/recall

分类

信息技术与安全科学

引用本文复制引用

肖文强,姚世军,吴善明..一种改进的top-N协同过滤推荐算法[J].计算机应用研究,2018,35(1):105-108,112,5.

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文