| 注册
首页|期刊导航|物理学报|空间盘绕型声学超材料的亚波长拓扑谷自旋态

空间盘绕型声学超材料的亚波长拓扑谷自旋态

郑圣洁 夏百战 刘亭亭 于德介

物理学报2017,Vol.66Issue(22):104-111,8.
物理学报2017,Vol.66Issue(22):104-111,8.DOI:10.7498/aps.66.228101

空间盘绕型声学超材料的亚波长拓扑谷自旋态

Subwavelength topological valley-spin states in the space-coiling acoustic metamaterials

郑圣洁 1夏百战 1刘亭亭 1于德介1

作者信息

  • 1. 湖南大学,汽车车身先进设计制造国家重点实验室,长沙410082
  • 折叠

摘要

Abstract

Phononic crystals possess Dirac linear dispersion bands.In the vicinity of Dirac cones,phononic crystals exhibit topological properties which have good application prospects in control of acoustic waves.Up to now,the topological edge states of phononic crystals,based on the band structures arising from the Bragg scattering,cannot realize lowfrequency sound waves by the topologically protected one-way edge transmission.In this paper,by introducing the space-coiling structure,a space-coiling phononic metamaterial with C3v symmetry is designed.At the K(K') points of the Brillouin zone,the bands linearly cross to a subwavelength Dirac degenerated cones.With a rotation of the acoustic metamaterials,the mirror symmetry will be broken and the Dirac degenerated cones will be reopened,leading to subwavelength topological phase transition and subwavelength topological valley-spin states.Lastly,along the topological interface between acoustic metamaterials with different topological valley-spin states,we successfully observe the phononic topologically valley-spin transmission.The subwavelength Dirac conical dispersion and the subwavelength topological valley-spin state breakthrough the limitation of the geometric dimension of the phononic topological insulator,and provide a theoretical basis for the application of the phononic topologically robust transmission in a subwavelength scale.

关键词

空间盘绕结构/亚波长声学超材料/Dirac简并锥/拓扑谷自旋态

Key words

space-coiling structure/subwavelength acoustic metamaterials/Dirac degenerated cone/topological valley-spin state

引用本文复制引用

郑圣洁,夏百战,刘亭亭,于德介..空间盘绕型声学超材料的亚波长拓扑谷自旋态[J].物理学报,2017,66(22):104-111,8.

物理学报

OA北大核心CSCDCSTPCDSCI

1000-3290

访问量0
|
下载量0
段落导航相关论文