| 注册
首页|期刊导航|智能系统学报|利用混沌布谷鸟优化的二维Renyi灰度熵图像阈值选取

利用混沌布谷鸟优化的二维Renyi灰度熵图像阈值选取

马英辉 吴一全

智能系统学报2018,Vol.13Issue(1):152-158,7.
智能系统学报2018,Vol.13Issue(1):152-158,7.DOI:10.11992/tis.201607004

利用混沌布谷鸟优化的二维Renyi灰度熵图像阈值选取

Two-dimensional Renyi-gray-entropy image threshold selection based on chaotic cuckoo search optimization

马英辉 1吴一全2

作者信息

  • 1. 南京航空航天大学 电子信息工程学院,江苏 南京 211106
  • 2. 宿迁学院 信息工程学院,江苏 宿迁 223800
  • 折叠

摘要

Abstract

To further reduce the computational complexity of existing thresholding methods based on Renyi's entropy, in this paper, we propose a method for threshold selection based on 2-D Renyi-gray-entropy image threshold selection and chaotic cuckoo search optimization. First, we derive the formula for a 1-D Renyi-gray-entropy threshold selection. Then, we build a 2-D histogram based on the grayscale and gray-gradient and derive a formula for 2-D Renyi-gray-en-tropy threshold selection based on this histogram. We use fast recursive algorithms to eliminate redundant computation in the threshold-selection criterion function. Finally, to achieve image segmentation, we search for the optimal threshold using the chaotic cuckoo search algorithm. The experimental results show that, compared with 2-D Arimoto-entropy thresholding method, the 2-D Renyi-entropy thresholding method based on particle swarm optimization, the 2-D Tsallis-gray-entropy thresholding method using chaotic particle swarm, and the 2-D Renyi-gray-entropy thresholding method based on the cuckoo search, our proposed method can segment objects more accurately and has a higher running speed.

关键词

图像分割/阈值选取/布谷鸟算法/Renyi灰度熵/灰度-梯度二维直方图/混沌优化/Arimoto熵/Tsallis灰度熵

Key words

image segmentation/threshold selection/cuckoo search algorithm/Renyi gray entropy/gray-gradient two-dimensional histogram/chaotic optimization/Arimoto entropy/Tsallis gray entropy

分类

信息技术与安全科学

引用本文复制引用

马英辉,吴一全..利用混沌布谷鸟优化的二维Renyi灰度熵图像阈值选取[J].智能系统学报,2018,13(1):152-158,7.

基金项目

西华大学制造与自动化省高校重点实验室开放课题(S2jj2014-028) (S2jj2014-028)

华中科技大学数字制造装备与技术国家重点实验室开放课题(DMETKF2014010) (DMETKF2014010)

安徽理工大学煤矿安全高效开采省部共建教育部重点实验室开放课题(JYBSYS2014102). (JYBSYS2014102)

智能系统学报

OA北大核心CSCDCSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文