| 注册
首页|期刊导航|中南大学学报(自然科学版)|城市快速路交通事件自动检测算法

城市快速路交通事件自动检测算法

邴其春 龚勃文 林赐云 杨兆升

中南大学学报(自然科学版)2017,Vol.48Issue(6):1682-1687,6.
中南大学学报(自然科学版)2017,Vol.48Issue(6):1682-1687,6.DOI:10.11817/j.issn.1672-7207.2017.06.036

城市快速路交通事件自动检测算法

Traffic incident automatic detection algorithm for urban expressway

邴其春 1龚勃文 2林赐云 1杨兆升3

作者信息

  • 1. 吉林大学交通学院,吉林长春,130022
  • 2. 青岛理工大学汽车与交通学院,山东青岛,266520
  • 3. 吉林大学汽车仿真与控制国家重点实验室,吉林长春,130022
  • 折叠

摘要

Abstract

In order to improve the accuracy of traffic incident detection for urban expressway,through analyzing the change rules of traffic flow parameters,the initial variables set of traffic incident detection which contains 12 variables was built,and the random forest method was used to select the key variables.Then combined kernel function,relevance vector machine model was constructed based on particle swarm optimization.Finally,validation and comparative analysis were carried out using inductive loop parameters measured from the north-south viaduct in Shanghai.The results show that the key variable selection can effectively improve the accuracy of traffic incident detection.The detection performance of combined kernel function RVM model is also better than that of the single kernel function RVM model and SVM model.

关键词

交通事件自动检测/随机森林/相关向量机模型/组合核函数

Key words

automatic incident detection/random forest/relevance vector machine model/combined kernel function

分类

交通工程

引用本文复制引用

邴其春,龚勃文,林赐云,杨兆升..城市快速路交通事件自动检测算法[J].中南大学学报(自然科学版),2017,48(6):1682-1687,6.

基金项目

“十二五”国家科技支撑计划项目(2014BAG03B03) (2014BAG03B03)

国家自然科学基金青年基金资助项目(51308248,51408257)(Project (2014BAG03B03) supported by the National Science and Technology Pillar Program During the 12th "Five-year" (51308248,51408257)

Projects(51308248,51408257)supported by the National Natural Science Youth Foundation of China) (51308248,51408257)

中南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1672-7207

访问量0
|
下载量0
段落导航相关论文