| 注册
首页|期刊导航|电子学报|基于全卷积网络的语义显著性区域检测方法研究

基于全卷积网络的语义显著性区域检测方法研究

郑云飞 张雄伟 曹铁勇 孙蒙

电子学报2017,Vol.45Issue(11):2593-2601,9.
电子学报2017,Vol.45Issue(11):2593-2601,9.DOI:10.3969/j.issn.0372-2112.2017.11.004

基于全卷积网络的语义显著性区域检测方法研究

The Semantic Salient Region Detection Algorithm Based on the Fully Convolutional Networks

郑云飞 1张雄伟 2曹铁勇 3孙蒙1

作者信息

  • 1. 解放军陆军工程大学,江苏南京210007
  • 2. 解放军炮兵防空兵学院,安徽合肥230031
  • 3. 安徽省偏振成像与探测重点实验室,安徽合肥230031
  • 折叠

摘要

Abstract

The existing salient region detection algorithms based on visual stimulus and prior knowledge are difficult to detect some complicated salient regions.The human vision system can distinguish these complicated salient regions because of the rich semantic knowledge in the human visual system.We construct a semantic salient region detection network using the fully convolutional structure.Learning the mapping from the low-level features to the human semantic cognition,our network can extract semantic salient region effectively.Aiming to the defects of the semantic salient region map,we introduce the color information,object boundary information and spatial consistency information to derive accurate superpixellevel foreground and background probability.At last,we fuse the foreground and background probability,semantic information and spatial consistency information to derive the final salient region map.The experiments comparing with the state-of-the-art 15 algorithms on 6 data sets demonstrate the effectiveness of our algorithm.

关键词

语义信息/全卷积网络/颜色外观模型/显著性区域检测

Key words

semantic information/fully convolutional network/color appearance model/salient region detection

分类

信息技术与安全科学

引用本文复制引用

郑云飞,张雄伟,曹铁勇,孙蒙..基于全卷积网络的语义显著性区域检测方法研究[J].电子学报,2017,45(11):2593-2601,9.

基金项目

国家自然科学基金(No.61471394) (No.61471394)

国家青年自然科学基金(No.61402519) (No.61402519)

江苏省自然科学基金(No.BK2012510,No.BK20140071,No.BK20140074) (No.BK2012510,No.BK20140071,No.BK20140074)

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文