| 注册
首页|期刊导航|电网技术|基于优化FCM聚类的RELM风速预测

基于优化FCM聚类的RELM风速预测

潘超 秦本双 何瑶 袁翀 沈清野

电网技术2018,Vol.42Issue(3):842-848,7.
电网技术2018,Vol.42Issue(3):842-848,7.DOI:10.13335/j.1000-3673.pst.2017.1200

基于优化FCM聚类的RELM风速预测

Wind Speed Forecasting of Regularized ELM Based on Optimized FCM Clustering

潘超 1秦本双 1何瑶 1袁翀 2沈清野3

作者信息

  • 1. 东北电力大学电气工程学院,吉林省吉林市 132012
  • 2. 国网淳安供电公司,浙江省淳安市 311700
  • 3. 国网舟山供电公司,浙江省舟山市 316000
  • 折叠

摘要

Abstract

Accurate wind speed forecasting is of great significance for large-scale wind power integration. In this paper, a new method of short-term wind speed forecasting is put forward based on regularized extreme learning machine (ELM) of optimal clustering and mutual information attribute reduction. Firstly, considering different effects of different attributes on wind speed, mutual information between wind speed characteristic sequence and wind speed sequence are calculated. The attribute features are selected with maximum- correlation minimum-redundancy algorithm. Then, wind samples are clustered with optimized fuzzy C-means (FCM) clustering method. The ELM is optimized and a combined forecasting model of wind speed is constructed. Finally, wind speed prediction experiment is carried out combined with measured data of wind farm. Results show that the method has high prediction accuracy.

关键词

风速预测/最大相关最小冗余/模糊C均值聚类/正则化/极限学习机

Key words

wind speed forecasting/minimal redundancy maximal relevance/fuzzy C-means clustering/regularization/extreme learning machine

分类

信息技术与安全科学

引用本文复制引用

潘超,秦本双,何瑶,袁翀,沈清野..基于优化FCM聚类的RELM风速预测[J].电网技术,2018,42(3):842-848,7.

基金项目

国家863高技术基金项目(SS2014AA052502) (SS2014AA052502)

国家自然科学基金项目(51507027). Project Supported by the National High Technology Research and Development Program of China (863 Program) (SS2014AA052502) (51507027)

National Natural Science Foundation of China (51507027). (51507027)

电网技术

OA北大核心CSCDCSTPCD

1000-3673

访问量0
|
下载量0
段落导航相关论文