| 注册
首页|期刊导航|广东电力|基于经验模态分解的变压器振动信号盲源分离

基于经验模态分解的变压器振动信号盲源分离

谢荣斌 张丽娟 靳斌 李诗勇 刘波 赵莉华

广东电力2018,Vol.31Issue(2):119-124,6.
广东电力2018,Vol.31Issue(2):119-124,6.DOI:10.3969/j.issn.1007-290X.2018.002.019

基于经验模态分解的变压器振动信号盲源分离

Blind Source Separation Technology of Transformer Vibration Signal Based on Empirical Mode Decomposition

谢荣斌 1张丽娟 1靳斌 1李诗勇 1刘波 1赵莉华2

作者信息

  • 1. 贵州电网有限责任公司贵阳供电局,贵州 贵阳550000
  • 2. 四川大学 电气信息学院,四川 成都610065
  • 折叠

摘要

Abstract

Transformer vibration signal contains a wealth of winding,core and other spare parts of the health status informa-tion.The real-time running vibration signal collected on the surface of the transformer is the aliasing signal of the core and winding vibration signal,The separation of the aliasing signal is more conducive to transformer fault diagnosis. A blind source separation method based on EMD decomposition is proposed,the signal is decomposed by EMD firstly,then extract the most relevant IMF components,finally,the fast ICA algorithm is used to solve the separation matrix.And the method is applied to the experimental simulation signal,which proves the feasibility of the method.Finally,the method is applied to the running transformer,the results show that the method can successfully separate the transformer core and winding vibra-tion signal,the effect is good.

关键词

变压器/振动信号/盲源分离/经验模态分解

Key words

transformer/vibration signal/blind source separation/empirical mode decomposition

分类

信息技术与安全科学

引用本文复制引用

谢荣斌,张丽娟,靳斌,李诗勇,刘波,赵莉华..基于经验模态分解的变压器振动信号盲源分离[J].广东电力,2018,31(2):119-124,6.

基金项目

贵州电网有限责任公司科技项目(060100〔2016〕030301SY503) (060100〔2016〕030301SY503)

广东电力

OACSTPCD

1007-290X

访问量0
|
下载量0
段落导航相关论文