| 注册
首页|期刊导航|计算机工程|基于降噪自编码器网络与词向量的信息推荐方法

基于降噪自编码器网络与词向量的信息推荐方法

郭喻栋 郭志刚 席耀一

计算机工程2017,Vol.43Issue(12):173-178,6.
计算机工程2017,Vol.43Issue(12):173-178,6.DOI:10.3969/j.issn.1000-3428.2017.12.032

基于降噪自编码器网络与词向量的信息推荐方法

Information Recommendation Method Based on Denoising Auto-encoder Network and Word Vector

郭喻栋 1郭志刚 1席耀一2

作者信息

  • 1. 解放军信息工程大学信息系统工程学院,郑州450002
  • 2. 解放军外国语学院,河南洛阳471003
  • 折叠

摘要

Abstract

The recommendation method based on Denoising Auto-encoder(DAE) lacks of items co-occurrence analysis ability,and the model exists the problem of cold start of parameters.In order to solve these problems,this paper proposes an information recommendation method based on DAE network and word vector.A training corpus is built by mapping users into documents and mapping items into words.The word vector model is used to train the corpus to generate item vectors which contain implicit context information.All item vectors are used as the initial weights to reconstruct the DAE neural network,and the model parameters are obtained through training.The model is used to predict ratings to complete top-N recommendation.Experimental results on standard datasets show that the proposed method improves the accuracy of recommendation,and the training speed is better than that of DAE,Singular Value Decomposition (SVD) and Collaborative Filtering(CF) methods.

关键词

信息推荐/神经网络/降噪自编码器/词向量/参数冷启动

Key words

information recommendation/neural network/Denoising Auto-encoder (DAE)/word vector/cold start of parameter

分类

信息技术与安全科学

引用本文复制引用

郭喻栋,郭志刚,席耀一..基于降噪自编码器网络与词向量的信息推荐方法[J].计算机工程,2017,43(12):173-178,6.

基金项目

国家社会科学基金“网上舆论斗争系统建模与应对策略研究”(14BXW028). (14BXW028)

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文