| 注册
首页|期刊导航|计算机工程与应用|随机森林在滚动轴承故障诊断中的应用

随机森林在滚动轴承故障诊断中的应用

张钰 陈珺 王晓峰 刘飞 周文晶 王志国

计算机工程与应用2018,Vol.54Issue(6):100-104,114,6.
计算机工程与应用2018,Vol.54Issue(6):100-104,114,6.DOI:10.3778/j.issn.1002-8331.1610-0127

随机森林在滚动轴承故障诊断中的应用

Application of random forest on rolling element bearings fault diagnosis

张钰 1陈珺 1王晓峰 2刘飞 1周文晶 2王志国1

作者信息

  • 1. 江南大学 自动化研究所 轻工过程先进控制教育部重点实验室,江苏 无锡214122
  • 2. 西门子中国研究院,北京100000
  • 折叠

摘要

Abstract

Due to selection difficulties for different bearing data feature, and low accuracy problems of single classifier method in the fault diagnosis of rolling bearing,this paper proposes a rolling bearing fault diagnosis algorithm with ran-dom forest based on Classification And Regression Tree(CART).Random forest is an ensemble learning method which contains a variety of classifiers. The accuracy of rolling bearing fault diagnosis is improved by"integrated"thought of random forest.First,time domain statistical indicators are extracted from the vibration signals of rolling bearings and will be used as feature vectors.Then,the random forest algorithm is utilized for the fault diagnosis of rolling bearing.Compared with the traditional algorithm(SVM,kNN and ANN)and single CART,diagnostic results proposed in this paper indicate that random forest algorithm has high diagnostic accuracy by using the bearing data of SQI-MFS experimental platform.

关键词

滚动轴承/故障诊断/特征提取/随机森林

Key words

rolling bearing/fault diagnosis/feature extraction/random forest

分类

机械制造

引用本文复制引用

张钰,陈珺,王晓峰,刘飞,周文晶,王志国..随机森林在滚动轴承故障诊断中的应用[J].计算机工程与应用,2018,54(6):100-104,114,6.

基金项目

国家自然科学基金(No.NSFC 61403167). (No.NSFC 61403167)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文