| 注册
首页|期刊导航|现代制造工程|基于深度卷积网络的图像边缘检测方法

基于深度卷积网络的图像边缘检测方法

赵新亚

现代制造工程Issue(2):144-149,6.
现代制造工程Issue(2):144-149,6.DOI:10.16731/j.cnki.1671-3133.2018.02.027

基于深度卷积网络的图像边缘检测方法

Image edge detection using deep convolutional networks

赵新亚1

作者信息

  • 1. 沈阳职业技术学院电气工程学院,沈阳110000
  • 折叠

摘要

Abstract

The accuracy of image edge detection is significant for the object detection.Extracting effectively object in the image is the main propose of image edge detection.To extracting effectively object,proposes a method of image edge detection using deep convolutional networks.This method uses three network lays to learn the large image set ImageNet.Based on the deep learning, image edge detection will obtain the edge structure feature to distinguish between the edge of the object and the edge of the scene.Compared with typical edge detection algorithms,the proposed method can be suitable for extracting the object.It is be-cause some noise edge in scene will be suppressed which can improve object operations.

关键词

边缘检测/深度卷积网络/Canny算法/目标检测

Key words

edge detection/deep convolutional networks/Canny algorithm/object operations

分类

信息技术与安全科学

引用本文复制引用

赵新亚..基于深度卷积网络的图像边缘检测方法[J].现代制造工程,2018,(2):144-149,6.

现代制造工程

OA北大核心CSCDCSTPCD

1671-3133

访问量0
|
下载量0
段落导航相关论文