| 注册
首页|期刊导航|机械科学与技术|Adaboost_SVM集成模型的滚动轴承早期故障诊断

Adaboost_SVM集成模型的滚动轴承早期故障诊断

陈法法 杨晶晶 肖文荣 程珩 张发军

机械科学与技术2018,Vol.37Issue(2):237-243,7.
机械科学与技术2018,Vol.37Issue(2):237-243,7.DOI:10.13433/j.cnki.1003-8728.2018.0212

Adaboost_SVM集成模型的滚动轴承早期故障诊断

Early Fault Diagnosis of Rolling Bearing based on Ensemble Model of Adaboost SVM

陈法法 1杨晶晶 1肖文荣 1程珩 2张发军1

作者信息

  • 1. 三峡大学水电机械设备设计与维护湖北省重点实验室,湖北宜昌443002
  • 2. 太原理工大学机械电子工程研究所,太原030024
  • 折叠

摘要

Abstract

Aiming at the early fault features of roller bearings are too weak so that it is difficult to get effective identification,an early fault diagnosis method based on Adaboost_SVM integrated learning model for rolling beating early fault diagnosis is proposed in this paper.Firstly,those sensitive feature parameters are selected through analyzing the feature parameters developing trend based on the rolling beating vibration data in whole life process acquired by the university of Cincinnati.Then,the ensemble learning model with Adaboost_SVM is constructed,and applied to the rolling beating early fault identification.Adaboost can adaptively improve the classification performance of conventional SVM.Compared with the traditional single SVM classifier,Adaboost_SVM has the best stability and the highest early fault diagnosis accuracy.The experimental results show that the Adaboost_SVM can effectively diagnose rolling bearing early failure modes with those sensitive feature parameters.

关键词

集成学习模型/支持向量机/Adaboost/滚动轴承/故障检测

Key words

Ensemble learning model/support vector machine (SVM)/Adaboost/roller beating/fault detection

分类

信息技术与安全科学

引用本文复制引用

陈法法,杨晶晶,肖文荣,程珩,张发军..Adaboost_SVM集成模型的滚动轴承早期故障诊断[J].机械科学与技术,2018,37(2):237-243,7.

基金项目

国家自然科学基金项目(51405264,51475266)与湖北省重点实验室开放基金项目(2017KJX02)资助 (51405264,51475266)

机械科学与技术

OA北大核心CSCDCSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文