| 注册
首页|期刊导航|机械科学与技术|旋转机械振动信号频域随机压缩与故障诊断

旋转机械振动信号频域随机压缩与故障诊断

王江萍 段腾飞

机械科学与技术2018,Vol.37Issue(2):293-299,7.
机械科学与技术2018,Vol.37Issue(2):293-299,7.DOI:10.13433/j.cnki.1003-8728.2018.0221

旋转机械振动信号频域随机压缩与故障诊断

Frequency Domain Random Compression of Vibration Signal and Fault Detection for Rotation Machinery

王江萍 1段腾飞1

作者信息

  • 1. 西安石油大学机械工程学院,西安710065
  • 折叠

摘要

Abstract

The fault detection method based on random compression of frequency domain and sparse representation classification for rotation machinery is proposed.The random compression of frequency domain is a way to achieve feature extraction.Fourier Transform converts vibration signal to get the amplitude sequence.And then,the compressive measurement of amplitude sequence is implemented with random matrix as fault feature vector.In sparse representation classification,the fault feature library is composed of fault feature vectors of which fault pattern is known.The classification of test feature vector is converted to a sparse optimization problem.The sparse representation coefficient of test feature vector under fault feature library is obtained using Orthogonal Matching Pursuit.With the sparse representation coefficient,the reconstruction residual of test feature vector under each fault pattern is obtained and the fault detection is done.The effectiveness of the proposed fault detection method is verified through the experiment of gear and bearing vibration.

关键词

旋转机械/故障诊断/随机矩阵/稀疏表示

Key words

rotation machinery/feature extraction/random matrix/fault detection/optimization

分类

机械制造

引用本文复制引用

王江萍,段腾飞..旋转机械振动信号频域随机压缩与故障诊断[J].机械科学与技术,2018,37(2):293-299,7.

基金项目

国家科技重大专项项目(2011ZX05046-04-07)与西安石油大学全日制硕士研究生优秀学位论文培育项目(2015YP140407)资助 (2011ZX05046-04-07)

机械科学与技术

OA北大核心CSCDCSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文