| 注册
首页|期刊导航|南京理工大学学报(自然科学版)|一种基于MapReduce的频繁模式挖掘算法

一种基于MapReduce的频繁模式挖掘算法

叶海琴 孟彩霞 王意锋 张爱玲

南京理工大学学报(自然科学版)2018,Vol.42Issue(1):62-67,6.
南京理工大学学报(自然科学版)2018,Vol.42Issue(1):62-67,6.DOI:10.14177/j.cnki.32-1397n.2018.42.01.009

一种基于MapReduce的频繁模式挖掘算法

Frequent pattern mining algorithm based on MapReduce

叶海琴 1孟彩霞 2王意锋 3张爱玲4

作者信息

  • 1. 周口师范学院 计算机科学与技术学院,河南 周口466001
  • 2. 铁道警察学院 公安技术系,河南 郑州450053
  • 3. 73658部队,安徽 滁州239421
  • 4. 71352部队 自动化站,河南 安阳455000
  • 折叠

摘要

Abstract

In order to solve the problems of large memory occupancy and low CPU processing speed when Algorithm Add algorithm is used in mining frequent patterns from massive data,based on the in-depth study of Algorithm Add algorithm,the parallel mining algorithm—MRAlgorithm Add based on the MapReduce calculation model is proposed in the paper.The MapReduce model is used to deal with new patterns,and the local frequent patterns are obtained at each node. The global frequent pat-terns are obtained by combining the results of each node. The design idea of the MRAlgorithm Add algorithm is introduced,and the operation performance of the MRAlgorithm Add algorithm is analyzed in this paper. The experimental results show that the MRAlgorithm Add algorithm running on the Hadoop cluster has better speedup performance and good scalability.

关键词

频繁模式/挖掘算法/AlgorithmAdd算法/MapReduce模型/Hadoop集群/MRAlgorithmAdd算法

Key words

frequent pattern/mining algorithm/Algorithm Add algorithm/MapReduce model/Hadoop cluster/MRAlgorithm Add algorithm

分类

信息技术与安全科学

引用本文复制引用

叶海琴,孟彩霞,王意锋,张爱玲..一种基于MapReduce的频繁模式挖掘算法[J].南京理工大学学报(自然科学版),2018,42(1):62-67,6.

基金项目

国家自然科学基金(U1504613) (U1504613)

河南省科技攻关项目(172102210607) (172102210607)

河南省知识产权局软科学研究项目(20170106020) (20170106020)

河南省高等学校重点科研项目(18B520034) (18B520034)

铁道警察学院教改项目(JY2017002) (JY2017002)

铁道警察学院中央基科项目(2017TJJBKY003) (2017TJJBKY003)

河南省社科联项目(SKL-2017-429) (SKL-2017-429)

河南省高校科技创新团队项目(17IRTSTHN009) (17IRTSTHN009)

南京理工大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1005-9830

访问量0
|
下载量0
段落导航相关论文