| 注册

模糊粗糙集的稳定约简方法

李京政 杨习贝 王平心 陈向坚

南京理工大学学报(自然科学版)2018,Vol.42Issue(1):68-75,8.
南京理工大学学报(自然科学版)2018,Vol.42Issue(1):68-75,8.DOI:10.14177/j.cnki.32-1397n.2018.42.01.010

模糊粗糙集的稳定约简方法

Stable attribute reduction approach for fuzzy rough set

李京政 1杨习贝 1王平心 2陈向坚3

作者信息

  • 1. 江苏科技大学 计算机学院,江苏 镇江212003
  • 2. 南京理工大学 经济管理学院,江苏 南京210094
  • 3. 江苏科技大学 数理学院,江苏 镇江212003
  • 折叠

摘要

Abstract

Attribute reduction plays a core role in rough set theory.Presently,most of the results of such topic are based on the measurements such that classification performances,costs,uncertainties and so on.Those do not carefully take the fluctuations of reducts into account if data perturbations happen.To fill this gap,a heuristic framework for generating stable reduct is proposed.Firstly,multiple boundary sample sets are induced by multiple clusterings' technique.Secondly,the fused significance for each attribute can be computed using the multiple significances of such attribute obtained in all boundary sample sets.Finally,the attribute with greatest fused significance is selected and then added into the pool set.The proposed algorithm is tested on several UCI data sets and the experimental results indicate that by comparing with traditional heuristic algorithms,this approach can not only effectively improve the time efficiency for computing reduct and the stability of the re-duct,but also advance the classification stability based on the reduct.

关键词

属性约简/数据扰动/模糊粗糙集/稳定性

Key words

attribute reduction/data perturbation/fuzzy rough sets/stability

分类

信息技术与安全科学

引用本文复制引用

李京政,杨习贝,王平心,陈向坚..模糊粗糙集的稳定约简方法[J].南京理工大学学报(自然科学版),2018,42(1):68-75,8.

基金项目

国家自然科学基金(61572242,61503160,61502211) (61572242,61503160,61502211)

江苏省高校哲学社会科学基金(2015SJD769) (2015SJD769)

中国博士后科学基金(2014M550293) (2014M550293)

江苏省青蓝工程人才项目 ()

南京理工大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1005-9830

访问量0
|
下载量0
段落导航相关论文