西北师范大学学报(自然科学版)2018,Vol.54Issue(2):6-12,7.DOI:10.16783/j.cnki.nwnuz.2018.02.002
具有强Allee效应及Holling-Ⅱ型反应项的捕食-食饵模型的全局分歧解及其稳定性
Existence and stability of solutions for predator-prey model with strong Allee effect and Holling-Ⅱ functional response
摘要
Abstract
The existence,bifurcation and stability of positive steady-state solutions to the prey-predator model with strong Allee effect and Holling-Ⅱ response function are discussed.First,some priori estimates of positive steady-state solutions is given by means of the maximum principle.Then taking the death rate of predator as a bifurcation parameter,the existence of local bifurcation from semi-trivial solutions is observed by using bifurcation theory and Leray-Schauder degree theory,and the local bifurcation is extended to global bifurcation.Finally,the stability of the local bifurcation solution is also discussed.关键词
捕食-食饵模型/强Allee效应/分歧理论/稳定性Key words
predator-prey model/strong Allee effect/bifurcation/stability分类
数理科学引用本文复制引用
冯孝周,孙素平,戴志敏..具有强Allee效应及Holling-Ⅱ型反应项的捕食-食饵模型的全局分歧解及其稳定性[J].西北师范大学学报(自然科学版),2018,54(2):6-12,7.基金项目
国家自然科学基金资助项目(61102144) (61102144)
陕西省自然科学基金资助项目(2013JC2-31) (2013JC2-31)
陕西省教育厅专项科研计划资助项目(14JK1353) (14JK1353)
西安工业大学研究生教改项目(2017033) (2017033)
西安工业大学校长基金资助项目(XAGDXJJ17028) (XAGDXJJ17028)