| 注册
首页|期刊导航|电子学报|双类型异质网中基于排序和聚类的离群点检测方法

双类型异质网中基于排序和聚类的离群点检测方法

彭涛 杨妮亚 徐原博 王冰冰 刘露

电子学报2018,Vol.46Issue(2):281-288,8.
电子学报2018,Vol.46Issue(2):281-288,8.DOI:10.3969/j.issn.0372-2112.2018.02.004

双类型异质网中基于排序和聚类的离群点检测方法

An Outlier Detection Method Based on Ranking and Clustering in Bi-typed Heterogeneous Network

彭涛 1杨妮亚 2徐原博 1王冰冰 1刘露1

作者信息

  • 1. 吉林大学计算机科学与技术学院,吉林长春130012
  • 2. 符号计算与知识工程教育部重点实验室(吉林大学),吉林长春130012
  • 折叠

摘要

Abstract

Mining the outliers that are different from normal data objects in the network is one of the important tasks in data mining.At present,the research aiming at outlier detection in bi-typed heterogeneous information network is relatively small.The methods which are applicable to homogeneous network can not be applied to bi-typed heterogeneous networks. Therefore,we propose a Rank-Kmeans Based Outlier detection method,called RKBOutlier,in heterogeneous information net-work.The two kinds of the objects and the connected semantic information are extracted from the heterogeneous information network.One type of the objects is regarded as the attribute objects,another type of the objects is regarded as the target ob-jects.We perform cluster partitioning on target objects to detect the distribution of the attribute objects in each cluster.The objects which are abnormal at data distribution are considered to be the outliers.Ranking and clustering are combined to sig-nificantly improve the accuracy of clustering.The experimental results show that RKBOutlier can effectively detect outliers in bi-typed heterogeneous information network.

关键词

离群点检测/排序/聚类/目标对象/属性对象

Key words

outlier detection/ranking/clustering/target object/attribute object

分类

信息技术与安全科学

引用本文复制引用

彭涛,杨妮亚,徐原博,王冰冰,刘露..双类型异质网中基于排序和聚类的离群点检测方法[J].电子学报,2018,46(2):281-288,8.

基金项目

国家自然科学基金(No.60903098) (No.60903098)

吉林大学研究生创新基金(No.2016183,No.2016184) (No.2016183,No.2016184)

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文