| 注册
首页|期刊导航|电子学报|基于层级实时记忆算法的时间序列异常检测算法

基于层级实时记忆算法的时间序列异常检测算法

曾惟如 吴佳 闫飞

电子学报2018,Vol.46Issue(2):325-332,8.
电子学报2018,Vol.46Issue(2):325-332,8.DOI:10.3969/j.issn.0372-2112.2018.02.010

基于层级实时记忆算法的时间序列异常检测算法

Time Series Anomaly Detection Model Based on Hierarchical Temporal Memory

曾惟如 1吴佳 1闫飞2

作者信息

  • 1. 电子科技大学信息与软件工程学院,四川成都610054
  • 2. 西南交通大学信息科学与技术学院,四川成都611756
  • 折叠

摘要

Abstract

Time series anomaly detection is an important area of data mining.Traditional methods of time series a-nomaly detection usually find the surprise,outlier,etc.,by comparing the data with the historical data.However,there are some limits with these methods,such as the inaccurate separation of the sequence,the false decision of the state and the win-dow size or the incorrect definition and judgement of the anomaly.This paper proposes a time series anomaly detection mod-el based on hierarchical temporal memory (HTM) to overcome the shortages of the traditional methods.This method can recognize and learn the intrinsic patterns in the time series and build a prediction model to determine an anomaly by compa-ring the real value with the predicted one.First,sparse distributed representation (SDR) is used to represent the raw data;then,the SDR is entered into the HTM model to make prediction;lastly,the proposed model evaluates the data by computing the difference of the actual value and the predicted one.The experiments on the artificial data and the real data show that HTM can detect anomalies accurately and quickly.

关键词

异常检测/神经网络/层级实时记忆/稀疏离散表征

Key words

anomaly detection/neuron network/hierarchical temporal memory/sparse distributed representation

分类

信息技术与安全科学

引用本文复制引用

曾惟如,吴佳,闫飞..基于层级实时记忆算法的时间序列异常检测算法[J].电子学报,2018,46(2):325-332,8.

基金项目

国家自然科学基金(No.61503059,No.61403316) (No.61503059,No.61403316)

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文