| 注册
首页|期刊导航|电力系统自动化|光伏系统中地基云图的预处理

光伏系统中地基云图的预处理

朱想 周海 朱婷婷 金山红 魏海坤

电力系统自动化2018,Vol.42Issue(6):140-145,151,7.
电力系统自动化2018,Vol.42Issue(6):140-145,151,7.DOI:10.7500/AEPS20170602008

光伏系统中地基云图的预处理

Pre-processing of Ground-based Cloud Images in Photovoltaic System

朱想 1周海 2朱婷婷 3金山红 4魏海坤3

作者信息

  • 1. 中国电力科学研究院有限公司(南京),江苏省南京市210003
  • 2. 新能源与储能运行控制国家重点实验室(中国电力科学研究院有限公司),江苏省南京市210003
  • 3. 东南大学自动化学院,江苏省南京市210096
  • 4. 国网浙江省电力有限公司嘉兴供电公司,浙江省嘉兴市314100
  • 折叠

摘要

Abstract

Due to the disadvantages of the total sky imager(TSI),there are a large area of occlusions and a certain extent of distortion in the ground-based cloud image applied into monitoring the sky conditions and predicting solar radiation,which would result in the inaccuracy of cloud detection,cloud classification and solar radiation forecast based on ground-based cloud image.Therefore,a mirror gradients algorithm is proposed to restore the distribution of cloud in the image.The position of the sun in the image is firstly calculated to mark the occlusions automatically.Then the ground-based cloud image is filled and inpainted with mirror gradients algorithm based on the color feature of cloud.Next,the white pixels around the sun are classified into cloud or cloudless sky according to the attenuation of solar radiation,and the grey values of the over-exposure cloudless pixels are adjusted.The experiment results show that the proposed pre-processing method could restore the cloud distribution condition of the sky quickly and it is better than some other published methods used in photovoltaic system.It gives the strong support for the following research such as the change of climate and solar irradiance forecast.

关键词

图像修复/地基云图/目标移除/镜像渐变算法/光伏发电

Key words

image inpainting/ground-based cloud image/obj ect removal/mirror gradients algorithm/photovoltaic generation

引用本文复制引用

朱想,周海,朱婷婷,金山红,魏海坤..光伏系统中地基云图的预处理[J].电力系统自动化,2018,42(6):140-145,151,7.

基金项目

国家自然科学基金资助项目(51561145011) (51561145011)

国家电网公司科技项目(SGHE0000KXJS1700074).This work is supported by National Natural Science Foundation of China(No.51561145011)and State Grid Corporation of China(No.SGHE0000KXJS1700074). (SGHE0000KXJS1700074)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量2
|
下载量0
段落导航相关论文