| 注册
首页|期刊导航|电子科技大学学报|一种基于信息论模型的入侵检测特征提取方法

一种基于信息论模型的入侵检测特征提取方法

宋勇 蔡志平

电子科技大学学报2018,Vol.47Issue(2):267-271,5.
电子科技大学学报2018,Vol.47Issue(2):267-271,5.DOI:10.3969/j.issn.1001-0548.2018.02.017

一种基于信息论模型的入侵检测特征提取方法

An Intrusion Detection Feature Extraction Method Based on Information Theory Model

宋勇 1蔡志平2

作者信息

  • 1. 湖南民族职业学院工程技术系 湖南 岳阳 414000
  • 2. 国防科技大学计算机学院 长沙 410073
  • 折叠

摘要

Abstract

In the network intrusion detection, because of the high dimensionality and redundant features of the original data, the storage burden of the intrusion detection system is increased, and the performance of the classifier is reduced. Aiming at this problem, this paper proposes an intrusion detection feature extraction method based on information theory model. The method starts with the feature of maximum information gain, and then iteratively adjusts the correlation among the classification mark of the data set, selected feature subset and candidate feature by search strategies and evaluation functions. Finally, the feature subset is determined by terminating conditions. In the experiment, we chose sample dataset for intrusion detection as the experimental data, and apply feature vector selected by the method to the support vector machine classification algorithm. It is found that the detection accuracy is almost unchanged, in the case that the dimension of the feature is greatly reduced. The results show the validity of the method.

关键词

特征选择/信息熵/入侵检测/互信息/半监督

Key words

feature selection/information entropy/intrusion detection/mutual information/semi-supervised

分类

信息技术与安全科学

引用本文复制引用

宋勇,蔡志平..一种基于信息论模型的入侵检测特征提取方法[J].电子科技大学学报,2018,47(2):267-271,5.

基金项目

国家自然科学基金(601379145) (601379145)

电子科技大学学报

OA北大核心CSCDCSTPCD

1001-0548

访问量0
|
下载量0
段落导航相关论文