| 注册
首页|期刊导航|化工学报|改进鲸鱼优化算法及其在渣油加氢参数优化的应用

改进鲸鱼优化算法及其在渣油加氢参数优化的应用

许瑜飞 钱锋 杨明磊 杜文莉 钟伟民

化工学报2018,Vol.69Issue(3):891-899,9.
化工学报2018,Vol.69Issue(3):891-899,9.DOI:10.11949/j.issn.0438-1157.20171128

改进鲸鱼优化算法及其在渣油加氢参数优化的应用

Improved whale optimization algorithm and its application in optimization of residue hydrogenation parameters

许瑜飞 1钱锋 1杨明磊 1杜文莉 1钟伟民1

作者信息

  • 1. 华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海 200237
  • 折叠

摘要

Abstract

An improved whale algorithm (DEOBWOA) based on differential evolution and elite opposition-based learning is proposed to solve the problem that the intelligent optimization algorithm is easy to fall into the local optimum and the convergence precision in dealing with the nonlinear optimization problem is poor. The algorithm uses the opposing search initialization, elite opposition-based learning and combines with differential evolution, which can improve the convergence precision and convergence speed of the whale optimization (WOA) algorithm effectively and improve the ability to jump out of local optimum. 8 standard test functions are used to do simulation experiment. The results show that DEOBWOA algorithm has a better performance than WOA, heterogeneous comprehensive learning particle swarm optimization (HCLPSO) and differential evolution (DE). Finally, the kinetic model of residue hydrogenation was established, but there are many typical nonlinear constraints in the process of residue hydrogenation. So DEOBWOA was used to optimize the kinetic model parameters of residue hydrogenation in a refinery residue, which indicates the algorithm can deal with the practical engineering optimization problem.

关键词

算法/鲸鱼优化算法/渣油加氢/动力学模型/参数估值/优化

Key words

algorithm/whale optimization algorithm/residue hydrogenation/kinetic modeling/parameter estimation/optimization

分类

能源科技

引用本文复制引用

许瑜飞,钱锋,杨明磊,杜文莉,钟伟民..改进鲸鱼优化算法及其在渣油加氢参数优化的应用[J].化工学报,2018,69(3):891-899,9.

基金项目

国家科技支撑计划项目(2015BAF22B02) (2015BAF22B02)

国家自然科学基金项目(61422303,61590922) (61422303,61590922)

中央高校基本科研业务费专项资金.supported by the Project of National Research Program of China(2015BAF22B02),the National Natural Science Foundation of China(61422303,61590922)and the Fundamental Research Funds for the Central Universities. (2015BAF22B02)

化工学报

OA北大核心CSCDCSTPCD

0438-1157

访问量0
|
下载量0
段落导航相关论文