| 注册
首页|期刊导航|应用数学|基于经验似然方法的向量复合泊松过程研究

基于经验似然方法的向量复合泊松过程研究

程从华

应用数学2018,Vol.31Issue(2):408-416,9.
应用数学2018,Vol.31Issue(2):408-416,9.

基于经验似然方法的向量复合泊松过程研究

Empirical Likelihood for Compound Poisson Vector Processes

程从华1

作者信息

  • 1. 肇庆学院数学与统计学院,广东 肇庆526061
  • 折叠

摘要

Abstract

In this article, we show that the log-empirical likelihood ratio statistic for the average number of objects of compound Poisson vector process converges to F(p,N(t)?p+1) as t → ∞ in distribution when the {Xj}∞j=1∈ Rpwith E(X) = μ, E(||X1||2) < ∞ and Var(X1) = Σ of rank q > 0. The simulation results show that the empirical likelihood ratio method is applicable.

关键词

向量复合泊松过程/置信域/经验似然

Key words

Compound Poisson vector process/Confidence region/Empirical likelihood

分类

数理科学

引用本文复制引用

程从华..基于经验似然方法的向量复合泊松过程研究[J].应用数学,2018,31(2):408-416,9.

基金项目

Supported by the National Natural Science Foundation of Guangdong (2016A030307019), the Higher Education Colleges and Universities Innovation Strong School Project of Guangdong(2016KTSCX153)and the Teaching Reform Project of Zhaoqing University(zlq201745) (2016A030307019)

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文