| 注册
首页|期刊导航|中国机械工程|基于最小熵解卷积-变分模态分解和优化支持向量机的滚动轴承故障诊断方法

基于最小熵解卷积-变分模态分解和优化支持向量机的滚动轴承故障诊断方法

姚成玉 来博文 陈东宁 孙飞 吕世君

中国机械工程2017,Vol.28Issue(24):3001-3012,12.
中国机械工程2017,Vol.28Issue(24):3001-3012,12.DOI:10.3969/j.issn.1004-132X.2017.24.017

基于最小熵解卷积-变分模态分解和优化支持向量机的滚动轴承故障诊断方法

Fault Diagnosis Method Based on MED-VMD and Optimized SVM for Rolling Bearings

姚成玉 1来博文 1陈东宁 2孙飞 3吕世君2

作者信息

  • 1. 燕山大学河北省工业计算机控制工程重点实验室,秦皇岛,066004
  • 2. 燕山大学河北省重型机械流体动力传输与控制重点实验室,秦皇岛,066004
  • 3. 先进锻压成形技术与科学教育部重点实验室(燕山大学),秦皇岛,066004
  • 折叠

摘要

Abstract

A method of fault feature extraction was proposed based on MED,VMD and fuzzy approximate entropy,and the optimized SVM was used to identify faults.The MED method was used to reduce the noise interferences and to enhance the fault feature informations in the fault signals,and the signals after noise reduction by VMD were decomposed,then,the fuzzy approximation entropy was used to quantify the modal components of fault feature informations after VMD,and the feature vectors were constructed,Finally,the extended particle swarm optimization(EPSO) algorithm was used to optimize the penalty factors and the kernel function parameters of SVM to complete the fault recognition classification.The proposed method was applied to the experimental data of rolling bearings,and the effectiveness of the method was verified.Compared with the feature extraction method based on local mean decomposition(LMD),it is shown that the proposed method may extract the features of rolling bearing faults more accurately and may identify different faults more accurately.Compared with SVM based on grid search algorithm and the least square support vector machines(LSSVM) based on EPSO algorithm,the proposed method has better classification performance and better diagnosis performance.

关键词

故障诊断/变分模态分解/最小熵解卷积/模糊近似熵/支持向量机

Key words

fault diagnosis/variational mode decomposition(VMD)/minimum entropy deconvolution(MED)/fuzzy approximate entropy/support vector machine(SVM)

分类

机械制造

引用本文复制引用

姚成玉,来博文,陈东宁,孙飞,吕世君..基于最小熵解卷积-变分模态分解和优化支持向量机的滚动轴承故障诊断方法[J].中国机械工程,2017,28(24):3001-3012,12.

基金项目

国家自然科学基金资助项目(51675460,51405426) (51675460,51405426)

河北省自然科学基金资助项目(E2016203306) (E2016203306)

中国博士后科学基金资助项目(2017M621101) (2017M621101)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文