| 注册
首页|期刊导航|电源技术|基于GAPSO-LSSVM的蓄电池剩余容量联合检测算法

基于GAPSO-LSSVM的蓄电池剩余容量联合检测算法

郑利川 郑益慧 李立学 王昕 陈洪涛

电源技术2018,Vol.42Issue(2):247-250,4.
电源技术2018,Vol.42Issue(2):247-250,4.

基于GAPSO-LSSVM的蓄电池剩余容量联合检测算法

Joint estimation algorithm for state of charge of battery based on GAPSO-LSSVM

郑利川 1郑益慧 1李立学 1王昕 1陈洪涛2

作者信息

  • 1. 上海交通大学电工与电子技术中心,上海200240
  • 2. 国网吉林省电力有限公司松原供电公司,吉林松原138000
  • 折叠

摘要

Abstract

The lead-acid battery is widely used,and the estimation of the battery SOC is important for the BMS.The temperature,resistance and the open circuit voltage were employed as the joint detection value,and the LSSVM algorithm with the PSO and GA algorithm was adopted to estimate the battery SOC.The PSO algorithm was used to optimize the penalty parameter and kernel function parameters in LSSVM algorithm to avoid man-made factors and improve the accuracy.In order to solve the problem in PSO algorithm that it trended to converge to local optimal solution,the GA algorithm was needed to enhance its global search ability and accuracy.The MATLAB simulation results verify the joint estimation algorithm is good,and the average error percentage can be controlled within 3%,which means the method has great practical significance.

关键词

蓄电池/剩余容量/LSSVM算法/PSO算法/GA算法/联合检测算法

Key words

battery/SOC/LSSVM algorithm/PSO algorithm/GA algorithm/joint estimation algorithm

分类

信息技术与安全科学

引用本文复制引用

郑利川,郑益慧,李立学,王昕,陈洪涛..基于GAPSO-LSSVM的蓄电池剩余容量联合检测算法[J].电源技术,2018,42(2):247-250,4.

基金项目

国家自然科学基金重点项目(61533012) (61533012)

上海市自然科学基金(14ZR1421800) (14ZR1421800)

电源技术

OA北大核心CSTPCD

1002-087X

访问量0
|
下载量0
段落导航相关论文