| 注册
首页|期刊导航|高技术通讯|基于局部均值分解和多尺度熵的运动想象脑电信号特征提取方法

基于局部均值分解和多尺度熵的运动想象脑电信号特征提取方法

邹晓红 张轶勃 孙延贞

高技术通讯2018,Vol.28Issue(1):22-28,7.
高技术通讯2018,Vol.28Issue(1):22-28,7.DOI:10.3772/j.issn.1002-0470.2018.01.004

基于局部均值分解和多尺度熵的运动想象脑电信号特征提取方法

A method for extraction of motor imagery EEG features based on local mean decomposition and multiscale entropy

邹晓红 1张轶勃 2孙延贞3

作者信息

  • 1. 燕山大学信息科学与工程学院 秦皇岛066004
  • 2. 河北省计算机虚拟技术与系统集成重点实验室 秦皇岛066004
  • 3. 河北省软件工程重点实验室 秦皇岛066004
  • 折叠

摘要

Abstract

Electroencephalogram(EEG)feature extraction is studied.Considering that traditional EEG feature extraction methods can not depict EEG features accurately,thus causing difficulties to motor imagery EEG classification under different mental tasks,this study proposes a feature extraction method based on local mean decomposition(LMD) and multiscale entropy(MSE).Firstly, the method adaptively decomposes an electroencephalogram(EEG)signal into a series of product function(PF)components with physical significance.Then,it selects effective PF compo-nents,calculates multiscale entropy, and combines multiscale entropy as eigenvectors.Finally, eigenvectors are put into the support vector machine(SVM)to identify the type of the electroencephalogram.The experimental re-sults show that the proposed method can effectively extract the features of EEG signal,which verifies the method's effectiveness and feasibility.

关键词

脑电信号(EEG)/特征提取/局部均值分解(LMD)/多尺度熵(MSE)/支持向量机(SVM)

Key words

electroencephalogram(EEG)/feature extraction/local mean decomposition(LMD)/multiscale entropy(MSE)/support vector machine(SVM)

引用本文复制引用

邹晓红,张轶勃,孙延贞..基于局部均值分解和多尺度熵的运动想象脑电信号特征提取方法[J].高技术通讯,2018,28(1):22-28,7.

基金项目

国家自然科学基金(No.61472340),国家自然科学基金青年基金(No.61602401)资助项目. (No.61472340)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量4
|
下载量0
段落导航相关论文