| 注册
首页|期刊导航|高技术通讯|hAPF-ACO:广义障碍环境下的移动机器人路径规划算法

hAPF-ACO:广义障碍环境下的移动机器人路径规划算法

代亚兰 熊禾根 陶永 李公法

高技术通讯2018,Vol.28Issue(1):67-77,11.
高技术通讯2018,Vol.28Issue(1):67-77,11.DOI:10.3772/j.issn.1002-0470.2018.01.009

hAPF-ACO:广义障碍环境下的移动机器人路径规划算法

A hAPF-ACO algorithm for path planning of mobile robots in generalized obstacle environments

代亚兰 1熊禾根 2陶永 1李公法2

作者信息

  • 1. 武汉科技大学冶金装备及其控制教育部重点实验室 武汉430081
  • 2. 武汉科技大学机械传动与制造工程湖北省重点实验室 武汉430081
  • 折叠

摘要

Abstract

Path planning of mobile robots is studied.In view of the two value grid modeling method can not completely reflect the geographical features of the real complex environments, and in consideration of the possible obstacle-breaking conditions when mobile robots perform some tasks, a new concept of 'generalized obstacle' is defined, further,the generalized obstacles are classified,and the corresponding fuzzy membership functions for all kinds of generalized obstacles are given,then the generalized obstacle environments are modeled by using the modified grid method.Based on the characteristics of artificial potential field(APF)method and ant colony optimization(ACO) method, a novel hybrid algorithm combining artificial potential field with ant colony optimization, called the (hAPF-ACO)algorithm,is put forward to solve the mobile robots' path planning problem in generalized obstacle environments.The simulation experiment with nine path planning cases is conducted.The experimental results re-veal the significance of the presented problem of path planning, and also show that hAPF-ACO algorithm outper-forms the ACO method in convergence property,solution quality and robustness significantly.

关键词

广义障碍/移动机器人/路径规划/人工势场法(APF)/蚁群优化(ACO)

Key words

generalized obstacle/mobile robot/path planning/artificial potential field(APF)/ant colony optimization(ACO)

引用本文复制引用

代亚兰,熊禾根,陶永,李公法..hAPF-ACO:广义障碍环境下的移动机器人路径规划算法[J].高技术通讯,2018,28(1):67-77,11.

基金项目

科技部支撑计划(2015BAF01B03)和国家自然科学基金(51575407)资助项目. (2015BAF01B03)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文