| 注册
首页|期刊导航|计算机工程与应用|结合K近邻的改进密度峰值聚类算法

结合K近邻的改进密度峰值聚类算法

薛小娜 高淑萍 彭弘铭 吴会会

计算机工程与应用2018,Vol.54Issue(7):36-43,8.
计算机工程与应用2018,Vol.54Issue(7):36-43,8.DOI:10.3778/j.issn.1002-8331.1801-0013

结合K近邻的改进密度峰值聚类算法

Improved density peaks clustering algorithm combining K-Nearest Neighbors

薛小娜 1高淑萍 1彭弘铭 2吴会会1

作者信息

  • 1. 西安电子科技大学 数学与统计学院,西安710126
  • 2. 西安电子科技大学 通信工程学院,西安710071
  • 折叠

摘要

Abstract

Concerning the problem that Density Peaks Clustering(DPC)algorithm has poor performance on the datasets with high dimension,noise and complex structure,an Improved Density Peaks Clustering Algorithm(IDPCA)combining K-Nearest Neighbors is proposed.Firstly,a new definition of local density is proposed to describe the distribution of the spatial samples.Secondly,the concept of core point is introduced and a global search allocation strategy is designed based on K-Nearest Neighbors thought to classify the unassigned K-Nearest Neighbors of core points correctly,which acceler-ates the clustering speed.Thirdly,a statistical learning allocation strategy is developed,by using the weighted K-Nearest Neighbors'information of the unassigned points to calculate the probability of them being assigned to each local cluster, which improves the clustering quality effectively.Finally,compared with DPC and other three classical clustering methods on 21 test datasets including synthetic and real-world datasets, the experimental results show that IDPCA outperforms them on four different evaluation indexes.

关键词

数据挖掘/聚类算法/局部密度/密度峰值/K近邻

Key words

data mining/clustering algorithm/local density/density peaks/K-Nearest Neighbors

分类

信息技术与安全科学

引用本文复制引用

薛小娜,高淑萍,彭弘铭,吴会会..结合K近邻的改进密度峰值聚类算法[J].计算机工程与应用,2018,54(7):36-43,8.

基金项目

国家自然科学基金(No.91338115) (No.91338115)

高等学校学科创新引智基地"111"计划(No.B08038). (No.B08038)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文