| 注册
首页|期刊导航|计算机工程与应用|最优方向耦合字典学习的遥感影像超分辨率重建

最优方向耦合字典学习的遥感影像超分辨率重建

王雪 隋立春 杨振胤 康军梅

计算机工程与应用2018,Vol.54Issue(7):201-205,5.
计算机工程与应用2018,Vol.54Issue(7):201-205,5.DOI:10.3778/j.issn.1002-8331.1709-0101

最优方向耦合字典学习的遥感影像超分辨率重建

Super-resolution reconstruction algorithm of remote sensing images based on method of optimal directions to coupled dictionary learning

王雪 1隋立春 1杨振胤 2康军梅3

作者信息

  • 1. 长安大学 地质工程与测绘学院,西安710054
  • 2. 地理国情监测国家测绘地理信息局 工程技术研究中心,西安710054
  • 3. 中国电建集团 西北勘测设计研究院有限公司,西安710065
  • 折叠

摘要

Abstract

In order to improve the spatial resolution of remote sensing images,this paper proposes improved joint dictionary learning algorithm.Method of optimal directions is exploited as an updating dictionary algorithm to learn coupled dictionary, and introduces sparse coefficient acquired by learning low resolution dictionary into the high resolution dictionary learning space.Exploiting sparse reconstruction method eventually generates a high resolution remote sensing image.At the same time, this algorithm is optimized, and training samples are automatically intercepted. By experiments, the results show that the proposed approach can achieve better reconstruction quality than existing algorithm in the subjective evaluation criteria. It also demonstrates effectively that the method is much faster than some classic algorithms in the process of learning dictionary,the reconstructed image is more clear and texture structure is more obvious.

关键词

耦合字典/最优方向法/超分辨率重建/遥感影像/稀疏表示

Key words

coupled dictionary/method of optimal directions/super-resolution reconstruction/remote sensing imagery/sparse representation

分类

信息技术与安全科学

引用本文复制引用

王雪,隋立春,杨振胤,康军梅..最优方向耦合字典学习的遥感影像超分辨率重建[J].计算机工程与应用,2018,54(7):201-205,5.

基金项目

国家自然科学基金(No.41372330) (No.41372330)

国家自然科学基金青年基金(No.41601345). (No.41601345)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文