| 注册
首页|期刊导航|计算机应用研究|基于SOM聚类的微博话题发现

基于SOM聚类的微博话题发现

宋莉娜 冯旭鹏 刘利军 黄青松

计算机应用研究2018,Vol.35Issue(3):671-674,679,5.
计算机应用研究2018,Vol.35Issue(3):671-674,679,5.DOI:10.3969/j.issn.1001-3695.2018.03.007

基于SOM聚类的微博话题发现

Microblog topics detection based on SOM clustering

宋莉娜 1冯旭鹏 2刘利军 1黄青松1

作者信息

  • 1. 昆明理工大学信息工程与自动化学院,昆明650500
  • 2. 昆明理工大学教育技术与网络中心,昆明650500
  • 折叠

摘要

Abstract

With the increase of microblog users,the information of microblog platform is updating frequently.This paper proposed microblog topics detection based on SOM clustering for the features of the microblog text data sparseness,new words and non-standard words.Firstly,it pretreated the short texts from the primitive text corpus,and extracted the features of the short texts by the word vector model which reduced the computational burden caused by the high vector dimension.In order to reduce the large amount of computation just to the high vector dimensions,this paper extracted the short text feature extraction by word vector model.Then,the topic clustering could be achieved by an improved SOM clustering.The algorithm improved the traditional texts clustering shortcoming.And the algorithm could find the topic effectively.Experimental results show that the algorithm's comprehensive index F value is improved obviously than the traditional methods.

关键词

话题发现/词向量模型/文本相似度/短文本/SOM聚类

Key words

topics detection/word vector model/texts similarity/short texts/SOM clustering

分类

信息技术与安全科学

引用本文复制引用

宋莉娜,冯旭鹏,刘利军,黄青松..基于SOM聚类的微博话题发现[J].计算机应用研究,2018,35(3):671-674,679,5.

基金项目

国家自然科学基金资助项目(81360230,81560296) (81360230,81560296)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文