| 注册
首页|期刊导航|计算机应用与软件|基于出租车轨迹数据的城市热点出行区域挖掘

基于出租车轨迹数据的城市热点出行区域挖掘

郑林江 赵欣 蒋朝辉 邓建国 夏冬 刘卫宁

计算机应用与软件2018,Vol.35Issue(1):1-8,8.
计算机应用与软件2018,Vol.35Issue(1):1-8,8.DOI:10.3969/j.issn.1000-386x.2018.01.001

基于出租车轨迹数据的城市热点出行区域挖掘

MINING URBAN ATTRACTIVE AREAS USING TAXI TRAJECTORY DATA

郑林江 1赵欣 2蒋朝辉 1邓建国 2夏冬 3刘卫宁3

作者信息

  • 1. 重庆大学计算机学院 重庆400030
  • 2. 信息物理社会可信服务计算教育部重点实验室(重庆大学) 重庆400030
  • 3. 重庆城市综合交通枢纽开发投资有限公司 重庆401121
  • 折叠

摘要

Abstract

Taxi GPS trajectories data contains massive spatial and temporal information of human activity and motility.By using a spatial clustering algorithm,attractive areas and moving patterns of people' s travel can be discovered from the taxi trajectory data,which is of great significance for urban planning,traffic management,and location-based services.Because of the poor scalability and low efficiency of mining attractive areas algorithm in the face of large scale trajectory data,we propose a new GScan clustering algorithm based on grid density.In this method,firstly,the grid cells are divided from the trajectory data space,then the spatial points are mapped to grid cells,the hot grid cells can be extracted by setting the threshold.At last,through merging reachable hot grid cells,the attractive areas in the city can be found.Based on taxis' pick-up/drop-off data of Chongqing,experiments and analysis are carried out.The parameters in the method are discussed,and a method of setting the parameters in the experiment is given.At the end of the paper,the spatial and temporal distribution of the attractive areas in Chongqing is presented to analyze the travel behavior of Chongqing citizen.

关键词

出租车轨迹/热点区域/网格密度/时空移动模式挖掘/出行行为

Key words

Taxi trajectory/Attractive area/Grid density/Spatiotemporal pattern discovery/Travel behavior

分类

信息技术与安全科学

引用本文复制引用

郑林江,赵欣,蒋朝辉,邓建国,夏冬,刘卫宁..基于出租车轨迹数据的城市热点出行区域挖掘[J].计算机应用与软件,2018,35(1):1-8,8.

基金项目

国家高技术研究发展计划项目(2015AA0153080) (2015AA0153080)

国家自然科学基金计划项目(61203135) (61203135)

重庆市应用开发计划重点项目(cstc2014yykfB30003) (cstc2014yykfB30003)

中国博士后科学基金特别资助项目(2014T70852) (2014T70852)

重庆博士后科研项目(XM201305) . (XM201305)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文