| 注册
首页|期刊导航|控制理论与应用|鲁棒高斯和集合卡尔曼滤波及其在纯角度跟踪中的应用

鲁棒高斯和集合卡尔曼滤波及其在纯角度跟踪中的应用

姜浩楠 蔡远利

控制理论与应用2018,Vol.35Issue(2):129-136,8.
控制理论与应用2018,Vol.35Issue(2):129-136,8.DOI:10.7641/CTA.2017.70116

鲁棒高斯和集合卡尔曼滤波及其在纯角度跟踪中的应用

Robust Gaussian-sum ensemble Kalman filter and its application in bearings-only tracking

姜浩楠 1蔡远利1

作者信息

  • 1. 西安交通大学电子与信息工程学院,陕西西安710049
  • 折叠

摘要

Abstract

In order to deal with the situation that measurements are easily contaminated by outliers and non-Gaussian noise,a new nonlinear filtering algorithm called the robust Gaussian-sum ensemble Kalman filter(RGSEnKF)is proposed for the bearings-only tracking problem.Firstly,the measurement update process of the ensemble Kalman filter is reformu-lated by using Huber technique so that outliers can be dealt with efficiently.Further,the improved ensemble Kalman filter is extended within a Gaussian-sum framework,the result is RGSEnKF algorithm which can handle the state estimation prob-lem of nonlinear system corrupted by non-Gaussian noise. Moreover,the new algorithm includes a range-parameterized initialization strategy and a Gaussian merging strategy. The former strategy can reduce the effect of unobservability of range in bearings-only tracking and the latter can prevent the number of Gaussian components from increasing over time. Lots of simulation results validate the effectiveness and robustness of the new algorithm.

关键词

纯角度跟踪/异常值/非高斯噪声/集合卡尔曼滤波/高斯和

Key words

bearings-only tracking/outliers/non-Gaussian noise/ensemble Kalman filter/Gaussian-sum

分类

航空航天

引用本文复制引用

姜浩楠,蔡远利..鲁棒高斯和集合卡尔曼滤波及其在纯角度跟踪中的应用[J].控制理论与应用,2018,35(2):129-136,8.

基金项目

国家自然科学基金项目(61202128),陕西省自然科学基础研究计划项目(2017JQ6056)资助.Supported by the National Natural Science Foundation of China(61202128)and the Shaanxi Province Natural Science Basic Research Project(2017JQ 6056). (61202128)

控制理论与应用

OA北大核心CSCDCSTPCD

1000-8152

访问量0
|
下载量0
段落导航相关论文