| 注册
首页|期刊导航|现代电力|基于深度学习的电网短期负荷预测方法研究

基于深度学习的电网短期负荷预测方法研究

吴润泽 包正睿 宋雪莹 邓伟

现代电力2018,Vol.35Issue(2):43-48,6.
现代电力2018,Vol.35Issue(2):43-48,6.

基于深度学习的电网短期负荷预测方法研究

Research on Short-term Load Forecasting Method of Power Grid Based on Deep Learning

吴润泽 1包正睿 1宋雪莹 1邓伟2

作者信息

  • 1. 华北电力大学电气与电子工程学院,北京 102206
  • 2. 北京国电通网络技术有限公司,北京 100070
  • 折叠

摘要

Abstract

The depth model achieves complex function ap-proximation by learning a deep nonlinear network structure, which has strong adaptive perception ability.In order to im-prove the prediction accuracy of power load,a deep learning prediction method based on stacked auto-encoder neural net-work is proposed in the paper.A multi-input single-output prediction model is built by combing the auto-encoder with the logic regression classifier,such data as the reconstructed historical load,meteorological elements and so on are all in-put into prediction model,and the load characteristics is ex-tracted through the hierarchical learning of the stacked auto-encoder.Finally,the short-term load prediction is realized by using the logical regression model at the top of the net-work.Case analysis shows that the proposed model can ef-fectively characterize the daily load change law with strong generalization performance,and its prediction accuracy can reach 9 6.2 %,which is higher than that of two shallow learning models based on support vector regression and fuzzy neural network respectively.

关键词

负荷预测/深度学习/栈式自编码器/特征提取/神经网络

Key words

load forecasting/deep learning/stacked auto-en-coder/feature extraction/neural network

分类

信息技术与安全科学

引用本文复制引用

吴润泽,包正睿,宋雪莹,邓伟..基于深度学习的电网短期负荷预测方法研究[J].现代电力,2018,35(2):43-48,6.

基金项目

国家自然科学基金资助项目(51507063) (51507063)

国家电网公司科技项目(B34681150152) (B34681150152)

现代电力

OA北大核心CSTPCD

1007-2322

访问量0
|
下载量0
段落导航相关论文