| 注册
首页|期刊导航|中南民族大学学报(自然科学版)|基于自编码神经网络与AdaBoost的快速行人检测算法

基于自编码神经网络与AdaBoost的快速行人检测算法

韩宪忠 李得锋 王克俭 周利亚

中南民族大学学报(自然科学版)2018,Vol.37Issue(1):108-113,6.
中南民族大学学报(自然科学版)2018,Vol.37Issue(1):108-113,6.

基于自编码神经网络与AdaBoost的快速行人检测算法

Fast Pedestrian Detection Algorithm Based on Auto-encoder Neural Network and AdaBoost

韩宪忠 1李得锋 1王克俭 1周利亚1

作者信息

  • 1. 河北农业大学 信息科学与技术学院,保定071000
  • 折叠

摘要

Abstract

Since the traditional algorithm has the shortages of slow detection rate and large error rate in pedestrian detection,a fast pedestrian detection algorithm based on auto-encoder neural network and AdaBoost is proposed. Firstly, the pedestrian detection algorithm based on ACF model is used to process the image to obtain the suspected object area. Then the acquired sub-region is normalized and the HOG feature is extracted and input into the auto-encoder neural network. Finally,the AdaBoost classifier is used to detect the classification and output the detected pedestrian area. The experimental results show that the proposed method has more performance than the existing detection algorithm for pedestrian detection,and its detection speed is also faster than most of the algorithms.

关键词

行人检测/HOG特征/AdaBoost算法/自编码网络/ACF模型

Key words

pedestrian detection/HOG feature/AdaBoost algorithm/auto-encoder network/ACF model

分类

信息技术与安全科学

引用本文复制引用

韩宪忠,李得锋,王克俭,周利亚..基于自编码神经网络与AdaBoost的快速行人检测算法[J].中南民族大学学报(自然科学版),2018,37(1):108-113,6.

基金项目

河北省科技项目基金资助项目(14227404D) (14227404D)

河北农业大学理工基金项目(LG201407 ()

ZD201407 ()

LG20140703) ()

河北省高等学校科学技术研究项目(ZD2015054) (ZD2015054)

中南民族大学学报(自然科学版)

OACSTPCD

1672-4321

访问量0
|
下载量0
段落导航相关论文