| 注册

双核因素蝙蝠算法

肖海军 成金华 何凡

中南民族大学学报(自然科学版)2018,Vol.37Issue(1):132-137,158,7.
中南民族大学学报(自然科学版)2018,Vol.37Issue(1):132-137,158,7.

双核因素蝙蝠算法

Double Core Factors Bat Algorithm

肖海军 1成金华 2何凡2

作者信息

  • 1. 中国地质大学(武汉)数学与物理学院,武汉430074
  • 2. 中国地质大学(武汉)经济管理学院 资源环境经济研究中心,武汉430074
  • 折叠

摘要

Abstract

In this paper,a new bionic optimization algorithm which termed double core factors bat algorithm(DCFBA) based on the bat algorithm was proposed. A new velocity updating formula was proposed in our algorithm to improve the optimization efficiency. Aimed at showing the advantages of our new algorithm, 9 benchmark problems were performed by the classical bat algorithm,the particle swarm optimization and DCFBA respectively.Experimental results show that DCFBA is better than the classical bat algorithm and the particle swarm optimization in effectiveness,superiority and stability.

关键词

蝙蝠算法/优化算法/双核因素蝙蝠算法/速度更新公式

Key words

bat algorithm/optimization algorithm/double core factors bat algorithm/velocity updating formula

分类

信息技术与安全科学

引用本文复制引用

肖海军,成金华,何凡..双核因素蝙蝠算法[J].中南民族大学学报(自然科学版),2018,37(1):132-137,158,7.

基金项目

国家自然科学基金资助项目(11301492) (11301492)

中南民族大学学报(自然科学版)

OACSTPCD

1672-4321

访问量0
|
下载量0
段落导航相关论文