| 注册
首页|期刊导航|华东交通大学学报|张量分解算法研究与应用综述

张量分解算法研究与应用综述

熊李艳 何雄 黄晓辉 黄卫春

华东交通大学学报2018,Vol.35Issue(2):120-128,9.
华东交通大学学报2018,Vol.35Issue(2):120-128,9.

张量分解算法研究与应用综述

Research and Application of Tensor Decomposition Algorithm

熊李艳 1何雄 1黄晓辉 1黄卫春2

作者信息

  • 1. 华东交通大学信息工程学院,江西 南昌330013
  • 2. 华东交通大学软件学院,江西 南昌330013
  • 折叠

摘要

Abstract

Tensor decomposition is a significant method to deal with large-scale data, which can reduce the data effectively.The high-order tensor is widely used in neuroscience,signal processing,image analysis,computer vi-sion and other fields as it has such advantages as uniqueness, robustness to noises and zero impact on the origi-nal data of the spatial structure and internal potential information. In this paper, the traditional dimensionality reduction methods were introduced firstly, and their problems and shortcomings were also discussed. Secondly, general analysis of three classical algorithms of tensor decomposition was carried out from the aspects of algo-rithm, basic ideas, algorithm framework and algorithm applications of CP decomposition, Tucker decomposition and non-negative tensor decomposition. Then, The CP decomposition algorithm and the Tucker decomposition algorithm were compared and analyzed from different angles. Finally, the present situation, practical application and future research trends of tensor decomposition were summarized and analyzed.

关键词

张量/CP分解/Tucker分解/非负张量分解

Key words

tensor/CP decomposition/tucker decomposition/non-negative tensor decomposition

分类

信息技术与安全科学

引用本文复制引用

熊李艳,何雄,黄晓辉,黄卫春..张量分解算法研究与应用综述[J].华东交通大学学报,2018,35(2):120-128,9.

基金项目

国家自然科学基金项目(61363072,61462027,6156202) (61363072,61462027,6156202)

江西省研究生创新基金(YC2016-S261) (YC2016-S261)

江西省自然科学基金项目(2016BAB212050) (2016BAB212050)

江西省科技成果转移转化计划项目(20161BB190032,20142BB190027) (20161BB190032,20142BB190027)

华东交通大学学报

OACSTPCD

1005-0523

访问量0
|
下载量0
段落导航相关论文