计量学报2018,Vol.39Issue(2):231-236,6.DOI:10.3969/j.issn.1000-1158.2018.02.19
基于局部均值分解多尺度模糊熵和灰色相似关联度的滚动轴承故障诊断
Rolling Bearing Fault Diagnosis Based on Local Mean Decomposition Multi-scale Fuzzy Entropy and Grey Similar Incidence
摘要
Abstract
A rolling bearing fault diagnosis method based on local mean decomposition (LMD) of multi-scale fuzzy entropy and grey similar incidence is discussed.In this method,the fault signal is decomposed into several product functions (PF) adaptively,and the multi-scale fuzzy entropies of the PF components covering contain main fault information,which is calculated to get the fault feature vectors.By calculating the grey similar incidence of the sample to be identified and the standard fault pattern,it is realized that the judgement of rolling bearing fault types and damage degree.Compared with the method based on LMD fuzzy entropy and grey similar incidence,the experimental results show that the method based LMD multi-scale fuzzy entropy and grey similar incidence can identify rolling bearing running state efficiently and realize rolling bearing fault diagnosis.关键词
计量学/滚动轴承/故障诊断/局部均值分解/多尺度模糊熵/灰色相似关联度Key words
metrology/rolling bearing/fault diagnosis/local mean decomposition/multi-scale fuzzy entropy/grey similar incidence分类
通用工业技术引用本文复制引用
孟宗,赵东方,李晶,熊景鸣,刘爽..基于局部均值分解多尺度模糊熵和灰色相似关联度的滚动轴承故障诊断[J].计量学报,2018,39(2):231-236,6.基金项目
国家自然科学基金(51575472) (51575472)
河北省自然科学基金(E2015203356) (E2015203356)
河北省高等学校科学研究计划重点项目(ZD2015049) (ZD2015049)
河北省留学人员科技活动项目择优资助(C2015005020) (C2015005020)