| 注册
首页|期刊导航|计算机工程与应用|基于多任务卷积神经网络的车辆多属性识别

基于多任务卷积神经网络的车辆多属性识别

王耀玮 唐伦 刘云龙 陈前斌

计算机工程与应用2018,Vol.54Issue(8):21-27,7.
计算机工程与应用2018,Vol.54Issue(8):21-27,7.DOI:10.3778/j.issn.1002-8331.1801-0170

基于多任务卷积神经网络的车辆多属性识别

Vehicle multi-attribute recognition based on multi-task convolutional neural network

王耀玮 1唐伦 1刘云龙 1陈前斌1

作者信息

  • 1. 重庆邮电大学 通信与信息工程学院,重庆400065
  • 折叠

摘要

Abstract

Fine-grained vehicle identification is challenging,especially when the two vehicles differ in appearance and subtleness.However,the general neural network model ignores the connection between the additional attributes.This paper proposes a convolution neural network based on improved triplet loss training for vehicle multi-attribute learning, which is used to implement fine-grained vehicle identification. Specifically, by changing the structure of the traditional neural network,the vehicle identification problem is transformed into a multi-attribute learning problem.In this paper,the triplet loss function is improved to train the network to achieve fine-grained vehicle identification.At the same time,it cre-ates a multi-attribute vehicle data set and completes the training work.The results show the potential of the method.

关键词

细粒度车辆识别/车辆多属性/多任务学习/卷积神经网络/度量学习/车辆多属性数据集

Key words

fine-grained vehicle recognition/vehicle multi-attribute/multi-task learning/convolution neural network/metric learning/vehicle multi-attribute data

分类

信息技术与安全科学

引用本文复制引用

王耀玮,唐伦,刘云龙,陈前斌..基于多任务卷积神经网络的车辆多属性识别[J].计算机工程与应用,2018,54(8):21-27,7.

基金项目

国家自然科学基金(No.61571073). (No.61571073)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文