| 注册
首页|期刊导航|计算机工程与应用|基于声学特征的腭裂语音声韵母切分

基于声学特征的腭裂语音声韵母切分

王熙月 黄毅鹏 钱佳慧 何凌 黄华 尹恒

计算机工程与应用2018,Vol.54Issue(8):123-130,136,9.
计算机工程与应用2018,Vol.54Issue(8):123-130,136,9.DOI:10.3778/j.issn.1002-8331.1611-0388

基于声学特征的腭裂语音声韵母切分

Initial and final segmentation in cleft palate speech based on acoustic characteristics

王熙月 1黄毅鹏 1钱佳慧 1何凌 1黄华 1尹恒2

作者信息

  • 1. 四川大学 电气信息学院,成都610065
  • 2. 四川大学 华西口腔医院,成都610041
  • 折叠

摘要

Abstract

This paper presents an initial/final segmentation algorithm in cleft palate speech.Through subjective test and objective F test and t test,it is proven that there are significant differences between cleft palate speech and normal speech. Two types of syllables are defined firstly:Class I syllable whose initial has the characteristics of voiceless phoneme,and Class II syllable whose initial has the characteristics of voiced phoneme.These two types of syllables are classified based on hierarchical fuzzy clustering model.Then for the class I syllable,a similar-to-voiced-sound weighting function and similar-to-unvoiced-sound probability function are defined,in order to achieve the roughly initial/final segmentation.The accurate location of initial/final boundary in class I syllable is achieved,through calculating the first-order difference of autocorrelation function's peak number.For the class II syllable,based on the waveform difference between initial and final,the energy's jumping point of short-autocorrelation function is found in order to achieve the initial/final segmenta-tion.The experiment results show that the proposed algorithm achieves a high segmentation accuracy rate:Segmentation accuracy for class I syllables is 90.72%,and segmentation accuracy for class II syllables is 92.90%.

关键词

腭裂语音/声韵母切分/层次聚类/短时自相关函数/类浊音权重函数/类清音概率函数/短时幅度函数

Key words

cleft palate speech/initials and finals segmentation/hierarchical clustering/short-time autocorrelation/similar-to-voiced-sounds weighting function/similar-to-unvoiced-sound probability function/short-time magnitude function

分类

信息技术与安全科学

引用本文复制引用

王熙月,黄毅鹏,钱佳慧,何凌,黄华,尹恒..基于声学特征的腭裂语音声韵母切分[J].计算机工程与应用,2018,54(8):123-130,136,9.

基金项目

国家自然基金青年科学基金项目(No.61503264). (No.61503264)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文