| 注册
首页|期刊导航|计算机工程与应用|基于强化学习的无人坦克对战仿真研究

基于强化学习的无人坦克对战仿真研究

徐志雄 曹雷 陈希亮

计算机工程与应用2018,Vol.54Issue(8):166-171,6.
计算机工程与应用2018,Vol.54Issue(8):166-171,6.DOI:10.3778/j.issn.1002-8331.1610-0348

基于强化学习的无人坦克对战仿真研究

Research on unmanned tank battle simulation based on reinforcement learning

徐志雄 1曹雷 1陈希亮1

作者信息

  • 1. 解放军理工大学 指挥信息系统学院,南京210000
  • 折叠

摘要

Abstract

To improve the classic reinforcement learning,through the introduction of motivation,prior knowledge is intro-duced,and the learning speed is speeded up.As to the iteration strategy,it adopts"on-policy"iterative Sarsa learning algo-rithm instead of traditional"off-policy"Q learning algorithm. It proposes Multi-Motivation Sarsa learning algorithm (MMSarsa)and respectively carries out the comparative tests on tank battle simulation with Q-learning algorithm and Sarsa learning algorithm.The results of experiment show that Sarsa learning algorithm based on motivation guidance has fast convergence rate and high learning efficiency.

关键词

多动机引导/Q学习/Sarsa学习/无人坦克/对战仿真

Key words

multi-motivation guidance/Q learning/Sarsa learning/unmanned tank/battle simulation

分类

信息技术与安全科学

引用本文复制引用

徐志雄,曹雷,陈希亮..基于强化学习的无人坦克对战仿真研究[J].计算机工程与应用,2018,54(8):166-171,6.

基金项目

国家部委预研基金. ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文