| 注册
首页|期刊导航|热力发电|双循环流化床颗粒循环流率实验研究

双循环流化床颗粒循环流率实验研究

陈鸿伟 杨新 贾建东 麻哲瑞 赵振虎 孙超

热力发电2018,Vol.47Issue(2):56-62,7.
热力发电2018,Vol.47Issue(2):56-62,7.DOI:10.19666/j.rlfd.201705042

双循环流化床颗粒循环流率实验研究

Experimental study on particle circulating rate of double-circulating fluidized bed

陈鸿伟 1杨新 1贾建东 1麻哲瑞 1赵振虎 2孙超3

作者信息

  • 1. 华北电力大学能源动力与机械工程学院,河北保定071003
  • 2. 天津能源投资集团科技有限公司,天津300204
  • 3. 河北水利电力学院,河北沧州 061001
  • 折叠

摘要

Abstract

In order to realize reasonable control of particle circulating flow rate,the effects of control parameters on circulating flow rate were analyzed on a self-built double-circulating fluidized bed cold system,such as the wind speed of the bubbling bed,total wind speed and air distribution ratio of the fast bed,static bed height of the bubling bed,and the average particle size.Moreover,on the basis of three different weight optimization algorithms,like the additional momentum method,Levenberg-Marquardt (LM) algorithm and genetic algorithm (GA),the BP neural network model was established,and the errors between the model predicted values and experimental values were compared.The results show that,the particle circulating flow rate was less influenced by the wind speed in bubbling bed,it increased with the primary air ratio and total wind speed of the fast bed and the static height of the bubling bed,but decreased with the increasing average particle size.The average error between the test sample and the one predicted by the GA-optimized BP neural network was 0.436 5%,the standard deviation was 0.064 1.The predicted values agreed well with the experimental values,indicating the BP neural network model was suitable.

关键词

双循环流化床/循环流率/控制参数/权值优化/BP神经网络模型/遗传算法/AM算法/LM算法

Key words

double-circulating fluidized bed/flow rate of particles/control parameters/weight optimization/BP neural network model/genetic algorithm/AM algorithm/LM algorithm

分类

能源科技

引用本文复制引用

陈鸿伟,杨新,贾建东,麻哲瑞,赵振虎,孙超..双循环流化床颗粒循环流率实验研究[J].热力发电,2018,47(2):56-62,7.

基金项目

河北省青年基金项目(QN2016204)Youth Foundation of Hebei Province (QN2016204) (QN2016204)

热力发电

OA北大核心CSTPCD

1002-3364

访问量0
|
下载量0
段落导航相关论文