| 注册
首页|期刊导航|信息与控制|一种基于种群多样性的粒子群优化算法设计及应用

一种基于种群多样性的粒子群优化算法设计及应用

韩红桂 卢薇 乔俊飞

信息与控制2017,Vol.46Issue(6):677-684,8.
信息与控制2017,Vol.46Issue(6):677-684,8.DOI:10.13976/j.cnki.xk.2017.0677

一种基于种群多样性的粒子群优化算法设计及应用

Design and Application of Particle Swarm Optimization Algorithm Based on Population Diversity

韩红桂 1卢薇 2乔俊飞1

作者信息

  • 1. 北京工业大学信息学部自动化学院,北京100124
  • 2. 计算智能与智能系统北京市重点实验室,北京100124
  • 折叠

摘要

Abstract

To overcome the premature convergence and low searching accuracy of the particle swarm optimization (PSO) algorithm,we propose a population diversity-based particle swarm optimization algorithm (PDPSO).First,we introduce the nonlinear characteristics of particles by the population diversity to describe the distribution state in the searching process.Second,we develop an adaptive inertia weight adjustment strategy to balance the global exploration ability and the local exploitation ability based on the population diversity of particles.Finally,we test the performance of PDPSO by using the standard test functions.We use the proposed PDPSO algorithm to optimize the energy consumption of the wastewater treatment process.Unlike the standard PSO algorithm and other improved PSO algorithms,the proposed PDPSO algorithm can avoid being trapped in the local optimum and achieve high accuracy,as demonstrated by simulation results.The proposed PDPSO algorithm can optimize the wastewater treatment process to reduce energy consumption within effluent water qualities.

关键词

种群多样性/自适应惯性权重/粒子群优化算法/污水处理运行能耗

Key words

population diversity/adaptive inertia weight/particle swarm optimization algorithm/energy consumption in the wastewater treatment process

分类

信息技术与安全科学

引用本文复制引用

韩红桂,卢薇,乔俊飞..一种基于种群多样性的粒子群优化算法设计及应用[J].信息与控制,2017,46(6):677-684,8.

基金项目

国家自然科学基金资助项目(61622301,61533002) (61622301,61533002)

中国博士后科学基金资助项目(2014M550017) (2014M550017)

教育部博士点基金资助项目(20131103110016) (20131103110016)

北京市教育委员会项目(km201410005001,KZ201410005002) (km201410005001,KZ201410005002)

信息与控制

OA北大核心CSCDCSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文