| 注册
首页|期刊导航|重庆大学学报|SVM与PSO相结合的电机轴承故障诊断

SVM与PSO相结合的电机轴承故障诊断

李嫄源 袁梅 王瑶 程安宇

重庆大学学报2018,Vol.41Issue(1):99-107,9.
重庆大学学报2018,Vol.41Issue(1):99-107,9.DOI:10.11835/j.issn.1000-582X.2018.01.011

SVM与PSO相结合的电机轴承故障诊断

Fault diagnosis of motor bearings based on SVM and PSO

李嫄源 1袁梅 1王瑶 1程安宇1

作者信息

  • 1. 重庆邮电大学自动化学院,重庆400065
  • 折叠

摘要

Abstract

A fault diagnosis method for motor bearings based on support vector machine (SVM) and particle swarm optimization (PSO) is proposed.The characteristic of the vibration signal is characterized by the time-domain and the wavelet packet energy characteristics,which makes the characteristic of the vibration signal has good reliability and sensitivity and improves the accuracy of fault diagnosis.The PSO algorithm is used to optimize the parameters of the penalty parameter and the radial basis kernel function of SVM,and compared with other parameter-optimization algorithms.Experimental results show that the proposed bearing fault diagnosis method has a very good effect not only on the recognition of motor bearing outer race fault,inner race fault and ball fault,but also on the severity differentiation of every kind of fault.It has strong practicability.

关键词

支持向量机/粒子群优化算法/小波包分析/特征提取/电机轴承/故障诊断

Key words

support vector machine/particle swarm optimization algorithm/wavelet packet analysis/feature extraction/motor bearing/fault diagnosis

分类

机械制造

引用本文复制引用

李嫄源,袁梅,王瑶,程安宇..SVM与PSO相结合的电机轴承故障诊断[J].重庆大学学报,2018,41(1):99-107,9.

基金项目

重庆市科技人才培养计划资助项目(CSTC2013KJRC-TDJS40010).Supported by Science and Technology Personnel Training Program of Chongqing (CSTC2013KJRC-TDJS40010). (CSTC2013KJRC-TDJS40010)

重庆大学学报

OA北大核心CSCDCSTPCD

1000-582X

访问量0
|
下载量0
段落导航相关论文