纺织高校基础科学学报2018,Vol.31Issue(1):74-80,7.DOI:10.13338/j.issn.1006-8341.2018.01.013
正负定矩阵下GAOR迭代法的收敛性
The convergence of GAOR iterative method on the basis of positive and negative definite matrices
摘要
Abstract
In order to study the convergence of GAOR iterative method on the basis of Hermi-tian positive and negative definite matrices,firstly the Householder-John theorem is introduced and generalized to the case of negative definite matrices.Then a sufficient and necessary condi-tion for the convergence of GAOR iterative method is given under the negative definite condi-tion.By using the Housholder-John theorem,the convergent conclusion of GAOR iterative method is improved.Finally,the convergence of GAOR iterative method under the Hermitian negative definite condition is analyzed through the generalized Householder-John theorem.关键词
收敛性/Hermite矩阵/正定矩阵/负定矩阵/GAOR迭代法Key words
convergence/Hermitian matrix/positive definite matrix/negative definite matrix/GAOR iterative method分类
数理科学引用本文复制引用
张改芹,畅大为,李晓艳..正负定矩阵下GAOR迭代法的收敛性[J].纺织高校基础科学学报,2018,31(1):74-80,7.基金项目
国家自然科学基金(11226266,11401361) (11226266,11401361)