| 注册
首页|期刊导航|纺织高校基础科学学报|正负定矩阵下GAOR迭代法的收敛性

正负定矩阵下GAOR迭代法的收敛性

张改芹 畅大为 李晓艳

纺织高校基础科学学报2018,Vol.31Issue(1):74-80,7.
纺织高校基础科学学报2018,Vol.31Issue(1):74-80,7.DOI:10.13338/j.issn.1006-8341.2018.01.013

正负定矩阵下GAOR迭代法的收敛性

The convergence of GAOR iterative method on the basis of positive and negative definite matrices

张改芹 1畅大为 1李晓艳1

作者信息

  • 1. 陕西师范大学数学与信息科学学院,陕西西安 710119
  • 折叠

摘要

Abstract

In order to study the convergence of GAOR iterative method on the basis of Hermi-tian positive and negative definite matrices,firstly the Householder-John theorem is introduced and generalized to the case of negative definite matrices.Then a sufficient and necessary condi-tion for the convergence of GAOR iterative method is given under the negative definite condi-tion.By using the Housholder-John theorem,the convergent conclusion of GAOR iterative method is improved.Finally,the convergence of GAOR iterative method under the Hermitian negative definite condition is analyzed through the generalized Householder-John theorem.

关键词

收敛性/Hermite矩阵/正定矩阵/负定矩阵/GAOR迭代法

Key words

convergence/Hermitian matrix/positive definite matrix/negative definite matrix/GAOR iterative method

分类

数理科学

引用本文复制引用

张改芹,畅大为,李晓艳..正负定矩阵下GAOR迭代法的收敛性[J].纺织高校基础科学学报,2018,31(1):74-80,7.

基金项目

国家自然科学基金(11226266,11401361) (11226266,11401361)

纺织高校基础科学学报

OACSTPCD

1006-8341

访问量0
|
下载量0
段落导航相关论文