| 注册
首页|期刊导航|计算机与数字工程|基于深度卷积神经网络的位置识别方法

基于深度卷积神经网络的位置识别方法

黄于峰 刘建国

计算机与数字工程2018,Vol.46Issue(4):822-827,6.
计算机与数字工程2018,Vol.46Issue(4):822-827,6.DOI:10.3969/j.issn.1672-9722.2018.04.039

基于深度卷积神经网络的位置识别方法

BCF:Bags of Convolution Features for Fast Visual Place Recognition

黄于峰 1刘建国1

作者信息

  • 1. 华中科技大学自动化学院 武汉430074
  • 折叠

摘要

Abstract

This work proposes a simple visual place recognition pipeline based on a Bag of Convolution Features(BCF), which is implemented by encoding CNN-based features using BoW aggregation.Feature-mapping image is also introduced,which allows directly mapping from regions of the original image to a visual word.Feature-mapping image is then used to perform a fast spa-tial reranking.Furthermore,this system doesn't require any form of task-specified training,all components are generic enough to be used off-the-shelf.The suitability of BCF for visual place recognition is demonstrated,and competitive performance on the challeng-ing Alderley Day/Night dataset and Gardens Point dataset is achieved.

关键词

卷积神经网络/词袋模型/特征描述/位置识别

Key words

CNN/BoW/feature descriptor/visual place recognition

分类

信息技术与安全科学

引用本文复制引用

黄于峰,刘建国..基于深度卷积神经网络的位置识别方法[J].计算机与数字工程,2018,46(4):822-827,6.

基金项目

高等学校博士学科点专项科研基金(编号:20110142110069)资助. (编号:20110142110069)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文