| 注册
首页|期刊导航|计算机应用研究|基于SBWS_GPR预测模型的不确定性多数据流异常检测方法

基于SBWS_GPR预测模型的不确定性多数据流异常检测方法

朱树才 秦宁宁

计算机应用研究2018,Vol.35Issue(2):381-385,5.
计算机应用研究2018,Vol.35Issue(2):381-385,5.DOI:10.3969/j.issn.1001-3695.2018.02.014

基于SBWS_GPR预测模型的不确定性多数据流异常检测方法

Outlier detection of uncertainty multiple data stream based on SBWS_GPR prediction model

朱树才 1秦宁宁1

作者信息

  • 1. 江南大学物联网工程学院,江苏无锡214122
  • 折叠

摘要

Abstract

The uncertainty of collecting data stream in practical system brings a serious challenge for oudier detection and correction.Based on the characteristic of sliding basic windows sampling (SBWS) and Gaussian process regression (GPR),this paper proposed the outlier detection method of uncertainty multiple data stream based on SBWS_GPR prediction model.By collecting historical data set based on time series and introducing index number,cluster and analysis historical data set and got the mapping relation between the data set and index number.The real-time input data stream obtained was to realize outlier detection and correction by the sliding windqw pattern.And then based on the correlation between the input and output data and the GPR,set up prediction model and compared the real-time output data stream data with the prediction output data stream,to realize outlier detection and correction from two different input and output channels.

关键词

不确定性/数据流/高斯过程回归/索引号/滑动窗口

Key words

uncertainty/data stream/GPR/index number/sliding window

分类

信息技术与安全科学

引用本文复制引用

朱树才,秦宁宁..基于SBWS_GPR预测模型的不确定性多数据流异常检测方法[J].计算机应用研究,2018,35(2):381-385,5.

基金项目

国家自然科学基金资助项目(61702228) (61702228)

江苏省自然科学基金资助项目(BK20170198) (BK20170198)

江苏省博士后科研项目(1601012A) (1601012A)

江苏省“六大人才高峰”计划资助项目(DZXX-026) (DZXX-026)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文