| 注册
首页|期刊导航|计算机应用研究|基于最优ABC-SVM算法的P2P流量识别

基于最优ABC-SVM算法的P2P流量识别

王春枝 杜远丽 叶志伟

计算机应用研究2018,Vol.35Issue(2):582-585,4.
计算机应用研究2018,Vol.35Issue(2):582-585,4.DOI:10.3969/j.issn.1001-3695.2018.02.055

基于最优ABC-SVM算法的P2P流量识别

Identification of P2P traffic based on optimal ABC-SVM

王春枝 1杜远丽 1叶志伟1

作者信息

  • 1. 湖北工业大学计算机学院,武汉430068
  • 折叠

摘要

Abstract

Currently peer-to-peer (P2P) network traffic identification is a hot topic in network management.Identification of P2P traffic based on support vector machine (SVM) is a commonly used P2P traffic identification method.However,the performance of SVM is mainly affected by the parameters and features used,the traditional method is to optimize the parameters and features of SVM separately.Hence,it is difficult to obtain the optimal SVM classifier on the whole.This paper proposed a P2P traffic identification approach based on artificial bee colony algorithm and the optimal SVM.Tuning parameters of SVM and feature selection was regarded as the optimization problem,which was handled with artificial bee colony algorithm synchronously.As a result,it obtained the optimal parameters and feature subset of SVM.The results show that the proposed method has good adaptability and classification accuracy on the real P2P data;it can simultaneously obtain the optimal feature subset and parameters of SVM and improve the overall performance.

关键词

人工蜂群算法/支持向量机/特征选择/参数优化/P2P流量识别

Key words

artificial bee colony algorithm/support vector machine/feature selection/parameter optimization/P2P traffic identification

分类

信息技术与安全科学

引用本文复制引用

王春枝,杜远丽,叶志伟..基于最优ABC-SVM算法的P2P流量识别[J].计算机应用研究,2018,35(2):582-585,4.

基金项目

国家自然科学基金资助项目(61170135) (61170135)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文