| 注册
首页|期刊导航|计算机应用研究|基于密度聚类和投票判别的三维数据去噪方法

基于密度聚类和投票判别的三维数据去噪方法

陶抒青 刘晓强 李柏岩 Shen Jie

计算机应用研究2018,Vol.35Issue(2):619-623,5.
计算机应用研究2018,Vol.35Issue(2):619-623,5.DOI:10.3969/j.issn.1001-3695.2018.02.064

基于密度聚类和投票判别的三维数据去噪方法

Denoising method for scanned 3D point cloud based on density clustering and majority voting

陶抒青 1刘晓强 1李柏岩 1Shen Jie2

作者信息

  • 1. 东华大学计算机科学与技术学院,上海201620
  • 2. 美国密歇根大学蒂尔伯恩分校计算机与信息科学系,蒂尔伯恩密歇根州MI 48128美国
  • 折叠

摘要

Abstract

This paper presented an effective outlier detection and removal method of denosing 3D data,which aimed at improving denoising effects as well as reserving characteristic information.This paper adopted the two stage treatment method.Firstly,it classified the data as good clusters,suspicious clusters or outliers clusters according to density clustering.Then the good cluster point determined suspicious clusters by majority voting,which would get a reasonable 3D point cloud data model finally.The experimental results show that this method can effectively remove the noise data in the 3D point cloud data and can effectively maintain the characteristics of the model surface and speed up the processing efficiency.

关键词

点云数据/异常点检测/基于密度聚类/投票判别算法

Key words

point cloud/outlier detection/density based clustering/voting discrimination algorithm

分类

信息技术与安全科学

引用本文复制引用

陶抒青,刘晓强,李柏岩,Shen Jie..基于密度聚类和投票判别的三维数据去噪方法[J].计算机应用研究,2018,35(2):619-623,5.

基金项目

上海市教育委员会科研创新项目(12ZZ060) (12ZZ060)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文