| 注册
首页|期刊导航|机械制造与自动化|基于粒子群算法优化BP神经网络的SRM磁链模型

基于粒子群算法优化BP神经网络的SRM磁链模型

郝娟

机械制造与自动化Issue(2):130-132,3.
机械制造与自动化Issue(2):130-132,3.DOI:10.19344/j.cnki.issn1671-5276.2018.02.035

基于粒子群算法优化BP神经网络的SRM磁链模型

SRM Flux Linkage Model of Optimizing BP Neural Network Based on PSO Algorithm

郝娟1

作者信息

  • 1. 河海大学 能源与电气学院,江苏 南京211100
  • 折叠

摘要

Abstract

This paper takes the current and flux linkage of 6/4 SRM motor as the input and its rotor position angle as the output to fit the flux-current-angle model and makes an experiment on its simulation in MATLAB/Simulink.To improve the training efficiency and simplify the fitting model, according to PSO algorithm, the number of neurons of double hidden layers of BP neural network is opti-mized and the results show that it has higher training result.

关键词

开关磁阻电机/BP神经网络/粒子群算法

Key words

switched reluctance motor/BP neural network/PSO algorithm

分类

信息技术与安全科学

引用本文复制引用

郝娟..基于粒子群算法优化BP神经网络的SRM磁链模型[J].机械制造与自动化,2018,(2):130-132,3.

机械制造与自动化

OACSTPCD

1671-5276

访问量0
|
下载量0
段落导航相关论文