云南师范大学学报(自然科学版)2018,Vol.38Issue(2):34-37,4.DOI:10.7699/j.ynnu.ns-2018-020
数论函数方程Z(n)=φ2(n)的解
Solutions of Arithmetic Function Equation Z (n) =φ2 (n)
摘要
Abstract
The solvability of the equation Z(n)=φ2 (n) was studied by using elementary methods and the Pseudo-Smarandache functions and generalized Euler functions.At the same time,all the form of positive integer solutions of the equation were proved and given.关键词
伪Smarandache函数/广义Euler函数/数论函数方程/正整数解Key words
Pseudo-Smarandache function/Generalized Euler function/Arithmetic functional equation/Positive integer solution分类
数理科学引用本文复制引用
赵祈芬,高丽..数论函数方程Z(n)=φ2(n)的解[J].云南师范大学学报(自然科学版),2018,38(2):34-37,4.基金项目
国家自然科学基金资助项目(11471007) (11471007)
陕西省科技厅科学技术研究发展计划资助项目(2013JQ1019) (2013JQ1019)
延安大学研究生教育创新计划资助项目(YCX201716). (YCX201716)