| 注册
首页|期刊导航|桂林理工大学学报|基于EMD-PSO-BP网络模型的大坝变形预测

基于EMD-PSO-BP网络模型的大坝变形预测

秦旭元 刘立龙 陈军 陈发德 黄良珂 谢劭峰

桂林理工大学学报2017,Vol.37Issue(4):641-646,6.
桂林理工大学学报2017,Vol.37Issue(4):641-646,6.DOI:10.3969/j.issn.1674-9057.2017.04.014

基于EMD-PSO-BP网络模型的大坝变形预测

Dam deformation forecast based on EMD-PSO-BP neural network model

秦旭元 1刘立龙 2陈军 1陈发德 2黄良珂 1谢劭峰2

作者信息

  • 1. 桂林理工大学桂林理工大学测绘地理信息学院,广西桂林541004
  • 2. 桂林理工大学广西空间信息与测绘重点实验室,广西桂林541004
  • 折叠

摘要

Abstract

Dam deformations have lots of characteristics such as non-stationary,non-linear.In this paper,we take Empirical Mode Decomposition (EMD) and Particle Swarm Optimization (PSO) into BP neural network,and establish EMD-PSO-BP model to forecast dam deformative values.In this model,EMD is used to decompose complex deformation data into finite and relatively stable components,and to predict each component by BP neural network optimized by Particle Swarm Optimization model,then to stack and reconstruct components as the final results.The experimental results show that the EMD-PSO-BP model has a better nonlinear mapping ability,learning ability and adaptive ability which can improve the predicted accuracy of deformations effectively.Also,the accuracy is obviously better than BP neural network model,a little better than PSO-BP model.

关键词

变形预测/EMD/PSO/BP神经网络

Key words

deformation prediction/EMD/PSO/BP neural network

分类

天文与地球科学

引用本文复制引用

秦旭元,刘立龙,陈军,陈发德,黄良珂,谢劭峰..基于EMD-PSO-BP网络模型的大坝变形预测[J].桂林理工大学学报,2017,37(4):641-646,6.

基金项目

国家自然科学基金项目(41541032) (41541032)

广西自然科学基金项目(2015GXNSFAA139230) (2015GXNSFAA139230)

广西空间信息与测绘重点实验室项目(14-045-24-03 ()

14-045-24-10) ()

广西“八桂学者”岗位专项经费项目 ()

研究生教育创新计划项目(YCSZ2015163) (YCSZ2015163)

桂林理工大学学报

OA北大核心CSTPCD

1674-9057

访问量0
|
下载量0
段落导航相关论文